AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment...AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment epithelial cell line(ARPE-19)were randomly divided into control,TGF-β_(2)(5μg/L),and BMP-6 small interfering RNA(siRNA)group.The cell morphology was observed by microscopy,and the cell migration ability were detected by Transwell chamber.The EMT-related indexes and BMP-6 protein levels were detected by Western blotting.Furthermore,a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group,TGF-β_(2)+empty plasmid group,BMP-6 overexpression group,and TGF-β_(2)+BMP-6 overexpression group.The EMT-related indexes and extracellular regulated protein kinases(ERK)protein levels were detected.RESULTS:Compared with the control group,the migration of RPE cells in the TGF-β_(2) group was significantly enhanced.TGF-β_(2) increased the protein expression levels ofα-smooth muscle actin(α-SMA),fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6(P<0.05)in RPE.Similarly,the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced.BMP-6 siRNA increased the protein expression levels ofα-SMA,fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin(P<0.05).Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-β_(2) and prevented TGF-β_(2) from affecting EMT-related biomarkers(P<0.05).CONCLUSION:BMP-6 prevents the EMT in RPE cells induced by TGF-β_(2),which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy.展开更多
AIM:To investigate the effect of dopamine on bone morphogenesis protein-2(BMP-2)expression in retinal pigment epithelium(RPE)cells in vitro.METHODS:ARPE-19 cells as a human RPE cell line were cultured with dopam...AIM:To investigate the effect of dopamine on bone morphogenesis protein-2(BMP-2)expression in retinal pigment epithelium(RPE)cells in vitro.METHODS:ARPE-19 cells as a human RPE cell line were cultured with dopamine for different times(2,4,6,8,12,16and 24h)or with different concentrations(0.1,1,2,5,10,20,and 100μg/m L)in vitro.BMP-2 m RNA expression level in ARPE-19 cells was analyzed with real-time polymerase chain reaction(PCR)analysis and BMP-2 protein level was measured with Western blot analysis.The active form of BMP-2 in the culture medium was measured with enzymelinked immunosorbent assay(ELISA).RESULTS:The expression level of BMP-2 increased significantly cultured with 20μg/m L dopamine,at different time points(P〈0.05).BMP-2 m RNA level peaked 2h and the protein level peaked at 6 and 8h after treatment.The concentrations of secreted BMP-2 elevated at 12h and peaked at 24h(P〈0.05)in a time-dependent manner.Treated with 100μg/m L dopamine for 6h,the expression levels of BMP-2 m RNA and protein in ARPE-19 cells were enhanced significantly compared to that in the untreated cells(P〈0.05).And secreted BMP-2 protein in the cell culture supernatant was also increased(P〈0.05).CONCLUSION:Dopamine up-regulate BMP-2 expression in RPE cells,and this may be associated with its inhibitive effect on myopia development.展开更多
AIM: To analyze the expression of uncoupling protein 2(UCP2) in retinal pigment epithelium(RPE) cells at the different human age, further explore the possible new target of RPE cells protection.METHODS: Adult retinal ...AIM: To analyze the expression of uncoupling protein 2(UCP2) in retinal pigment epithelium(RPE) cells at the different human age, further explore the possible new target of RPE cells protection.METHODS: Adult retinal pigment epithelial-19(ARPE-19) cells and the primary RPE cells at the different age(9-20 y,50-55 y, 60-70 y, >70 y) were cultured and harvested. The expression of UCP2 in these cells was detected by reverse transcription-polymerase chain reaction(RT-PCR), Western blot and confocal microscopy.RESULTS: Cells from the donors more than 60 y are larger and more fibroblastic in appearance compared to ARPE-19 cells and those primary cultures obtained from the younger individuals by using phase-contrast micrographs. Results of RT-PCR, Western blot and confocal microscopy all showed that UCP2 was highly expressed in ARPE-19 cells and in the younger primary cultured human RPE cells at the age of 9-20 y and 50-55 y, whereas lower expression of UCP2 was measured in the older primary cultured human RPE cells at the age more than 60 y.CONCLUSION: Expression of UCP2 gene is decreased in aged RPE cells, promoting the lower ability of anti-oxidation in these cells. It is indicated that UCP2 gene might be a new target for protecting the cells from oxidative stress damage.展开更多
TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and th...TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorphous, 2.9-nm-thick TiO2 protective layer was deposited onto the surface of anatase TiO2 pigments according to pulsed chemical vapor deposition at room temperature, with Ti Cl4 as titanium precursor. Amorphous TiO2 coating layers exhibited poor photocatalytic activity, leading to a boosted weatherability. Similarly, this coating method is also effective for TiO2 coating with amorphous SiO2 and SnO2 layers. However, the lightening power of amorphous TiO2 layer is higher than those of amorphous SiO2 and SnO2 layers. According to the measurements of photoluminescence lifetime, surface photocurrent density, charge-transfer resistance, and electron spin resonance spectroscopy, it is revealed that the amorphous layer can prevent the migration of photogenerated electrons and holes onto the surface, decreasing the densities of surface electron and hole, and thereby suppress the photocatalytic activity.展开更多
AIM: Age-related macular degeneration (AMD) is a multifactorial disease and a prevalent cause of visual impairment in developed countries. Many studies suggest that age-related maculopathy susceptibility 2 (ARMS2) is ...AIM: Age-related macular degeneration (AMD) is a multifactorial disease and a prevalent cause of visual impairment in developed countries. Many studies suggest that age-related maculopathy susceptibility 2 (ARMS2) is a second major susceptibility gene for AMD. At present, there is no functional information on this gene. Therefore, the purpose of the present study was to detect the expression of ARMS2 in retinal pigment epithelium (RPE) cells and to investigate the effect of ARMS2 on the phagocytosis function of RPE cells. METHODS: Immunofluorescence and reverse transcriptase PCR were used to demonstrate the presence and location of ARMS2 in ARPE-19 (human retinal pigment epithelial cell line, ATCC, catalog No.CRL-2302) cells. siRNA was used to knock down ARMS2 mRNA, and the effects of the knockdown on the phagocytosis function of the ARPE-19 cells were evaluated via Fluorescence Activated Cell Sorting (FACS). RESULTS: ARMS2 was present in ARPE-19 cells, localized in the cytosol of the perinuclear region. The expression of ARMS2 mRNA (messenger RNA) in ARPE-19 cells transfected with ARMS2-siRNA (small interfering RNA, 0.73+/- 0.08) was decreased compared with normal cells (1.00+/- 0.00) or with cells transfected with scrambled siRNA (0.95+/- 0.13) (P<0.05). After incubation of RPE cells with a latex beads medium for 12, 18, or 24 hours, the fluorescence intensities were 38.04 +/- 1.02, 68.92 +/- 0.92, and 78.00 +/- 0.12 in the ARMS2-siRNA-transfected groups, respectively, and 77.98 +/- 5.43, 94.87 +/- 0.60, and 98.30 +/- 0.11 in the scrambled siRNA-transfected groups, respectively. The fluorescent intensities of the same time points in the two groups were compared using Student's t-test, and the p values were all less than 0.001 at the three different time points. CONCLUSION: There is endogenous expression of ARMS2 in ARPE-19 cells. ARMS2 plays a role in the phagocytosis function of RPE cells, and this role may be one of the mechanisms that participates in the development of AMD.展开更多
AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS...AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS: Retinal pigment epithelial(ARPE-19) cells were cultured with no serum for 12 h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7 c mimcs(miR-let7 cM), miR-let7 c mimcs negative control(miR-let7cMNC) and miR-let7 c inhibitor(miR-let7 cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS: The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B(NF-κB) signaling pathway was activated after induction by TGF-β2(P<0.05). In turn, overexpressed miR-let7 c significantly inhibited TGF-β2-induced EMT(P<0.05). However, miR-let7 c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082(P<0.01). CONCLUSION: The miR-let7 c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.展开更多
AIM: To evaluate the expression of uncoupling protein 2(UCP2) in a retinal pigment epithelium cell line(ARPE-19), under oxidative stress(OS).METHODS: ARPE-19 cells were divided into groups treated with various concent...AIM: To evaluate the expression of uncoupling protein 2(UCP2) in a retinal pigment epithelium cell line(ARPE-19), under oxidative stress(OS).METHODS: ARPE-19 cells were divided into groups treated with various concentrations of hydrogen peroxide(H2 O2;0, 150, 300, 500, 700, and 900 μmol/L) for 24 h, to induce oxidative damage and cell viability was assessed by MTT assay. UCP2 mRNA expression in cells treated with H2 O2 was investigated by reverse transcription-polymerase chain reaction(RT-PCR). UCP2 protein expression was assessed by Western blotting and ROS levels analyzed by flow cytometry(FCM). Further, UCP2-siRNA treated cultures were exposed to H2 O2(0, 75, 150, and 300 μmol/L) for 2 h and cell viability determined by MTT assay.RESULTS: Cells treated with higher concentrations of H2 O2 appeared shrunken;their adhesion to adjacent cells was disrupted, and the number of dead cells increased. The results of cell viability assays demonstrated that the numbers of cells were decreased in a dose-dependent manner following treatment with H2 O2. Compared with untreated controls, cell viability was significantly reduced after treatment with >300 μmol/L H2 O2(P<0.05). Cell metabolic activity was decreased with increased concentrations of H2 O2 as detected by MTT assay. Levels of OS were further decreased in cells treated with UCP2-siRNA compared with those treated with H2 O2 alone(P<0.05). The results of RT-PCR and Western blotting demonstrated that UCP2 expression was reduced in H2 O2-treated groups compared with controls(P<0.05). FCM analysis showed that cell reactive oxygen species(ROS) levels were increased in H2 O2-treated groups and further upregulated by UCP2-si RNA treatment(P<0.05).CONCLUSION: Expression levels of UCP2 are decreased in ARPE-19 cells treated with H2 O2. ROS levels are further increased in cells treated with UCP2-siRNA relative to those treated with H2 O2 alone. UCP2 may have a protective role in ARPE-19 cells during oxidative injury.展开更多
Programmed cel death (PCD) plays a critical role in the development of plant pigment glands, while H2O2, which is a kind of reactive oxygen species (ROS) produced by the aerobic metabolism of cels, acts as an impo...Programmed cel death (PCD) plays a critical role in the development of plant pigment glands, while H2O2, which is a kind of reactive oxygen species (ROS) produced by the aerobic metabolism of cels, acts as an important signal in this process. Here, we investigated the temporal and spatial dynamics of accumulated H2O2 in pigment glands ofGossypium hirsutum L. with 3,3-diaminobenzidine (DAB) staining, 2’,7’-dichlorodihydrolfuorescein diacetate (DCFH2)-DA lfuorescent labeling and CeCl3 cytochemical localization techniques. The results showed that thepigment glandsofG. hirsutum could generate H2O2, and the amount and localization of H2O2 variedat different developmental stages. At the early developmental stage, a smal amount of H2O2 accumulated in the vacuole membrane of pigment gland cels. At the intermediate stage, a large number of H2O2 appeared in the vacuole membrane, while cel wals started to accumulate a smal amount of H2O2. When pigment gland cel degraded, H2O2 mainly accumulated on the chloroplast envelope membrane of inner sheath cels. With the degradation of the sheath cels, H2O2was detected in cel wal and the membrane of secretory vesicles which contains the preliminary contents of pigment gland. With the pigment glands completely maturation, H2O2 would disappeared. The accumulation sites of H2O2are consistent with the process of PCD of individual gland cels, which started from the degra-dation of intracelular membrane and ended with the degradation of cel wals. Thus H2O2 probably plays an important role in the development of pigment glands. In addition, the development of pigment glands and the generation of H2O2 are not associated with the light, and no H2O2 was detected in the secretions of pigment glands.展开更多
Dear editor, In the recent years growing evidence on the involvement of human matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in cerebral malaria (CM) has been reported[1]and a role ...Dear editor, In the recent years growing evidence on the involvement of human matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in cerebral malaria (CM) has been reported[1]and a role for malarial pigment haemozoin(HZ) has been proposed[2,3].In a recent work my group showed that in human microvascular endothelial展开更多
AIM:To investigate the effect of morroniside(Mor)on lipopolysaccharide(LPS)-treated iris pigment epithelial cells(IPE).METHODS:IPE cells were induced by LPS and treated with Mor.Cell proliferation was detected by cell...AIM:To investigate the effect of morroniside(Mor)on lipopolysaccharide(LPS)-treated iris pigment epithelial cells(IPE).METHODS:IPE cells were induced by LPS and treated with Mor.Cell proliferation was detected by cell counting kit(CCK)-8,apoptosis was detected by flow cytometry,the levels of tumor necrosis factor-α(TNF-α),interleukin(IL)-6,and IL-8 were measured by enzyme-linked immunosorbent assay(ELISA)kits,and the protein expression of TLR4,JAK2,p-JAK2,STAT3,and p-STAT3 was analyzed by Western blotting.In addition,overexpression of TLR4 and Mor treatment of LPS-stimulated IPE cells were also tested for the above indices.RESULTS:Mor effectively promoted the proliferation and inhibited the apoptosis of LPS-treated IPE cells.In addition,Mor significantly reduced the levels of TNF-α,IL-6,and IL-8 and significantly inhibited the expression of TLR4,p-JAK2,and p-STAT3 in LPS-treated IPE cells.The effect of Mor on LPS-treated IPE cells was markedly attenuated after overexpression of TLR4.CONCLUSION:These findings suggest that Mor may ameliorate LPS-induced inflammatory damage and apoptosis in IPE through inhibition of TLR4/JAK2/STAT3 pathway.展开更多
AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are r...AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.展开更多
Background: Most data on laser resurfacing have come from studies of people with Fitzpatrick skin types 1 - 3;however, the world’s population is comprised mostly of Fitzpatrick skin types 4 - 6, which are more suscep...Background: Most data on laser resurfacing have come from studies of people with Fitzpatrick skin types 1 - 3;however, the world’s population is comprised mostly of Fitzpatrick skin types 4 - 6, which are more susceptible to post-inflammatory hyperpigmentation (PIH). Objective: For the purpose of expanding the expertise of plastic surgeons treating patients with darker skin types, this study examined the incidence of PIH in Asians who underwent laser resurfacing, including a histologic arm on fractional ablative resurfacing. Methods & Materials: The clinical study included six subjects of Vietnamese origin who underwent single-depth fractionated CO2 laser resurfacing. The histologic study involved a seventh subject. The MiXto SX®laser with a new scanning handpiece was used, along with magnifying loupes to assess ablative depth after each of three laser passes performed. Photographs were taken at various postoperative intervals. Results: All six clinical subjects showed cosmetic improvement in skin texture and tone with no post-inflammatory hyperpigmentation. In the histologic study, H&E stained sections revealed uniform diathermy. Conclusion: It is possible to significantly reduce PIH in darker skinned subjects through use of a new scanning handpiece and a technique using loupes to assess the depth of ablative resurfacing. The histologic study confirms these findings.展开更多
Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress o...Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.展开更多
基金Supported by the Key Research&Development Program of Shaanxi Province(No.2022SF-311,No.2024SFYBXM-328,No.2024SF-YBXM-325)the Natural Science Basic Research Program of Shaanxi Province,China(No.2021JQ-385).
文摘AIM:To evaluate the effect of bone morphogenetic protein-6(BMP-6)on transforming growth factor(TGF)-β_(2)-induced epithelial-mesenchymal transition(EMT)in retinal pigment epithelium(RPE).METHODS:Adult retinal pigment epithelial cell line(ARPE-19)were randomly divided into control,TGF-β_(2)(5μg/L),and BMP-6 small interfering RNA(siRNA)group.The cell morphology was observed by microscopy,and the cell migration ability were detected by Transwell chamber.The EMT-related indexes and BMP-6 protein levels were detected by Western blotting.Furthermore,a BMP-6 overexpression plasmid was constructed and RPE cells were divided into the control group,TGF-β_(2)+empty plasmid group,BMP-6 overexpression group,and TGF-β_(2)+BMP-6 overexpression group.The EMT-related indexes and extracellular regulated protein kinases(ERK)protein levels were detected.RESULTS:Compared with the control group,the migration of RPE cells in the TGF-β_(2) group was significantly enhanced.TGF-β_(2) increased the protein expression levels ofα-smooth muscle actin(α-SMA),fibronectin and vimentin but significantly decreased the protein levels of E-cadherin and BMP-6(P<0.05)in RPE.Similarly,the migration of RPE cells in the BMP-6 siRNA group was also significantly enhanced.BMP-6 siRNA increased the protein expression levels ofα-SMA,fibronectin and vimentin but significantly decreased the protein expression levels of E-cadherin(P<0.05).Overexpression of BMP-6 inhibited the migration of RPE cells induced by TGF-β_(2) and prevented TGF-β_(2) from affecting EMT-related biomarkers(P<0.05).CONCLUSION:BMP-6 prevents the EMT in RPE cells induced by TGF-β_(2),which may provide a theoretical basis for the prevention and treatment of proliferative vitreoretinopathy.
文摘AIM:To investigate the effect of dopamine on bone morphogenesis protein-2(BMP-2)expression in retinal pigment epithelium(RPE)cells in vitro.METHODS:ARPE-19 cells as a human RPE cell line were cultured with dopamine for different times(2,4,6,8,12,16and 24h)or with different concentrations(0.1,1,2,5,10,20,and 100μg/m L)in vitro.BMP-2 m RNA expression level in ARPE-19 cells was analyzed with real-time polymerase chain reaction(PCR)analysis and BMP-2 protein level was measured with Western blot analysis.The active form of BMP-2 in the culture medium was measured with enzymelinked immunosorbent assay(ELISA).RESULTS:The expression level of BMP-2 increased significantly cultured with 20μg/m L dopamine,at different time points(P〈0.05).BMP-2 m RNA level peaked 2h and the protein level peaked at 6 and 8h after treatment.The concentrations of secreted BMP-2 elevated at 12h and peaked at 24h(P〈0.05)in a time-dependent manner.Treated with 100μg/m L dopamine for 6h,the expression levels of BMP-2 m RNA and protein in ARPE-19 cells were enhanced significantly compared to that in the untreated cells(P〈0.05).And secreted BMP-2 protein in the cell culture supernatant was also increased(P〈0.05).CONCLUSION:Dopamine up-regulate BMP-2 expression in RPE cells,and this may be associated with its inhibitive effect on myopia development.
基金Supported by the National Natural Science Foundation of China(No.81100665 No.81770929)
文摘AIM: To analyze the expression of uncoupling protein 2(UCP2) in retinal pigment epithelium(RPE) cells at the different human age, further explore the possible new target of RPE cells protection.METHODS: Adult retinal pigment epithelial-19(ARPE-19) cells and the primary RPE cells at the different age(9-20 y,50-55 y, 60-70 y, >70 y) were cultured and harvested. The expression of UCP2 in these cells was detected by reverse transcription-polymerase chain reaction(RT-PCR), Western blot and confocal microscopy.RESULTS: Cells from the donors more than 60 y are larger and more fibroblastic in appearance compared to ARPE-19 cells and those primary cultures obtained from the younger individuals by using phase-contrast micrographs. Results of RT-PCR, Western blot and confocal microscopy all showed that UCP2 was highly expressed in ARPE-19 cells and in the younger primary cultured human RPE cells at the age of 9-20 y and 50-55 y, whereas lower expression of UCP2 was measured in the older primary cultured human RPE cells at the age more than 60 y.CONCLUSION: Expression of UCP2 gene is decreased in aged RPE cells, promoting the lower ability of anti-oxidation in these cells. It is indicated that UCP2 gene might be a new target for protecting the cells from oxidative stress damage.
基金Supported by the National Key R&D Program of China(2018YFB0605700).
文摘TiO2 pigments are typically coated with inert layers to suppress the photocatalytic activity and improve the weatherability. However, the traditional inert layers have a lower refractive index compared to TiO2, and therefore reduce the lightening power of TiO2. In the present work, a uniform, amorphous, 2.9-nm-thick TiO2 protective layer was deposited onto the surface of anatase TiO2 pigments according to pulsed chemical vapor deposition at room temperature, with Ti Cl4 as titanium precursor. Amorphous TiO2 coating layers exhibited poor photocatalytic activity, leading to a boosted weatherability. Similarly, this coating method is also effective for TiO2 coating with amorphous SiO2 and SnO2 layers. However, the lightening power of amorphous TiO2 layer is higher than those of amorphous SiO2 and SnO2 layers. According to the measurements of photoluminescence lifetime, surface photocurrent density, charge-transfer resistance, and electron spin resonance spectroscopy, it is revealed that the amorphous layer can prevent the migration of photogenerated electrons and holes onto the surface, decreasing the densities of surface electron and hole, and thereby suppress the photocatalytic activity.
基金Supported by National Natural Science Foundation of China(No.30901637)Qingdao Sci-Tec Bureau, China(No.08-2-1-3-nsh)
文摘AIM: Age-related macular degeneration (AMD) is a multifactorial disease and a prevalent cause of visual impairment in developed countries. Many studies suggest that age-related maculopathy susceptibility 2 (ARMS2) is a second major susceptibility gene for AMD. At present, there is no functional information on this gene. Therefore, the purpose of the present study was to detect the expression of ARMS2 in retinal pigment epithelium (RPE) cells and to investigate the effect of ARMS2 on the phagocytosis function of RPE cells. METHODS: Immunofluorescence and reverse transcriptase PCR were used to demonstrate the presence and location of ARMS2 in ARPE-19 (human retinal pigment epithelial cell line, ATCC, catalog No.CRL-2302) cells. siRNA was used to knock down ARMS2 mRNA, and the effects of the knockdown on the phagocytosis function of the ARPE-19 cells were evaluated via Fluorescence Activated Cell Sorting (FACS). RESULTS: ARMS2 was present in ARPE-19 cells, localized in the cytosol of the perinuclear region. The expression of ARMS2 mRNA (messenger RNA) in ARPE-19 cells transfected with ARMS2-siRNA (small interfering RNA, 0.73+/- 0.08) was decreased compared with normal cells (1.00+/- 0.00) or with cells transfected with scrambled siRNA (0.95+/- 0.13) (P<0.05). After incubation of RPE cells with a latex beads medium for 12, 18, or 24 hours, the fluorescence intensities were 38.04 +/- 1.02, 68.92 +/- 0.92, and 78.00 +/- 0.12 in the ARMS2-siRNA-transfected groups, respectively, and 77.98 +/- 5.43, 94.87 +/- 0.60, and 98.30 +/- 0.11 in the scrambled siRNA-transfected groups, respectively. The fluorescent intensities of the same time points in the two groups were compared using Student's t-test, and the p values were all less than 0.001 at the three different time points. CONCLUSION: There is endogenous expression of ARMS2 in ARPE-19 cells. ARMS2 plays a role in the phagocytosis function of RPE cells, and this role may be one of the mechanisms that participates in the development of AMD.
基金Supported by National Natural Science Foundation of China(No.81600754)。
文摘AIM: To explore the roles of microRNA-let7 c(miR-let7 c) and transforming growth factor-β2(TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition(EMT) of retinal pigment epithelial cells. METHODS: Retinal pigment epithelial(ARPE-19) cells were cultured with no serum for 12 h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7 c mimcs(miR-let7 cM), miR-let7 c mimcs negative control(miR-let7cMNC) and miR-let7 c inhibitor(miR-let7 cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS: The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B(NF-κB) signaling pathway was activated after induction by TGF-β2(P<0.05). In turn, overexpressed miR-let7 c significantly inhibited TGF-β2-induced EMT(P<0.05). However, miR-let7 c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082(P<0.01). CONCLUSION: The miR-let7 c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.
基金Supported by the National Natural ScienceFoundation of China(No.81100665 No.81770929)
文摘AIM: To evaluate the expression of uncoupling protein 2(UCP2) in a retinal pigment epithelium cell line(ARPE-19), under oxidative stress(OS).METHODS: ARPE-19 cells were divided into groups treated with various concentrations of hydrogen peroxide(H2 O2;0, 150, 300, 500, 700, and 900 μmol/L) for 24 h, to induce oxidative damage and cell viability was assessed by MTT assay. UCP2 mRNA expression in cells treated with H2 O2 was investigated by reverse transcription-polymerase chain reaction(RT-PCR). UCP2 protein expression was assessed by Western blotting and ROS levels analyzed by flow cytometry(FCM). Further, UCP2-siRNA treated cultures were exposed to H2 O2(0, 75, 150, and 300 μmol/L) for 2 h and cell viability determined by MTT assay.RESULTS: Cells treated with higher concentrations of H2 O2 appeared shrunken;their adhesion to adjacent cells was disrupted, and the number of dead cells increased. The results of cell viability assays demonstrated that the numbers of cells were decreased in a dose-dependent manner following treatment with H2 O2. Compared with untreated controls, cell viability was significantly reduced after treatment with >300 μmol/L H2 O2(P<0.05). Cell metabolic activity was decreased with increased concentrations of H2 O2 as detected by MTT assay. Levels of OS were further decreased in cells treated with UCP2-siRNA compared with those treated with H2 O2 alone(P<0.05). The results of RT-PCR and Western blotting demonstrated that UCP2 expression was reduced in H2 O2-treated groups compared with controls(P<0.05). FCM analysis showed that cell reactive oxygen species(ROS) levels were increased in H2 O2-treated groups and further upregulated by UCP2-si RNA treatment(P<0.05).CONCLUSION: Expression levels of UCP2 are decreased in ARPE-19 cells treated with H2 O2. ROS levels are further increased in cells treated with UCP2-siRNA relative to those treated with H2 O2 alone. UCP2 may have a protective role in ARPE-19 cells during oxidative injury.
基金supported by the National Natural Science Foundation of China (31270428)
文摘Programmed cel death (PCD) plays a critical role in the development of plant pigment glands, while H2O2, which is a kind of reactive oxygen species (ROS) produced by the aerobic metabolism of cels, acts as an important signal in this process. Here, we investigated the temporal and spatial dynamics of accumulated H2O2 in pigment glands ofGossypium hirsutum L. with 3,3-diaminobenzidine (DAB) staining, 2’,7’-dichlorodihydrolfuorescein diacetate (DCFH2)-DA lfuorescent labeling and CeCl3 cytochemical localization techniques. The results showed that thepigment glandsofG. hirsutum could generate H2O2, and the amount and localization of H2O2 variedat different developmental stages. At the early developmental stage, a smal amount of H2O2 accumulated in the vacuole membrane of pigment gland cels. At the intermediate stage, a large number of H2O2 appeared in the vacuole membrane, while cel wals started to accumulate a smal amount of H2O2. When pigment gland cel degraded, H2O2 mainly accumulated on the chloroplast envelope membrane of inner sheath cels. With the degradation of the sheath cels, H2O2was detected in cel wal and the membrane of secretory vesicles which contains the preliminary contents of pigment gland. With the pigment glands completely maturation, H2O2 would disappeared. The accumulation sites of H2O2are consistent with the process of PCD of individual gland cels, which started from the degra-dation of intracelular membrane and ended with the degradation of cel wals. Thus H2O2 probably plays an important role in the development of pigment glands. In addition, the development of pigment glands and the generation of H2O2 are not associated with the light, and no H2O2 was detected in the secretions of pigment glands.
文摘Dear editor, In the recent years growing evidence on the involvement of human matrix metalloproteinases(MMPs) and tissue inhibitors of metalloproteinases(TIMPs) in cerebral malaria (CM) has been reported[1]and a role for malarial pigment haemozoin(HZ) has been proposed[2,3].In a recent work my group showed that in human microvascular endothelial
基金Supported by the Natural Science Foundation of Gansu Province(No.23JRRA0942)Innovation Fund for Colleges and Universities in Gansu Province(No.2021B-23).
文摘AIM:To investigate the effect of morroniside(Mor)on lipopolysaccharide(LPS)-treated iris pigment epithelial cells(IPE).METHODS:IPE cells were induced by LPS and treated with Mor.Cell proliferation was detected by cell counting kit(CCK)-8,apoptosis was detected by flow cytometry,the levels of tumor necrosis factor-α(TNF-α),interleukin(IL)-6,and IL-8 were measured by enzyme-linked immunosorbent assay(ELISA)kits,and the protein expression of TLR4,JAK2,p-JAK2,STAT3,and p-STAT3 was analyzed by Western blotting.In addition,overexpression of TLR4 and Mor treatment of LPS-stimulated IPE cells were also tested for the above indices.RESULTS:Mor effectively promoted the proliferation and inhibited the apoptosis of LPS-treated IPE cells.In addition,Mor significantly reduced the levels of TNF-α,IL-6,and IL-8 and significantly inhibited the expression of TLR4,p-JAK2,and p-STAT3 in LPS-treated IPE cells.The effect of Mor on LPS-treated IPE cells was markedly attenuated after overexpression of TLR4.CONCLUSION:These findings suggest that Mor may ameliorate LPS-induced inflammatory damage and apoptosis in IPE through inhibition of TLR4/JAK2/STAT3 pathway.
基金Supported by National Natural Science Foundation of China(No.2020J01652)the Training Project for Young and Middleaged Core Talents in Health System of Fujian Province(No.2016-ZQN-62).
文摘AIM:To determine whether the microRNA-27b-3p(miR-27b-3p)/NF-E2-related factor 2(Nrf2)pathway plays a role in human retinal pigment epithelial(hRPE)cell response to high glucose,how miR-27b-3p and Nrf2 expression are regulated,and whether this pathway could be specifically targeted.METHODS:hRPE cells were cultured in normal glucose or high glucose for 1,3,or 6d before measuring cellular proliferation rates using cell counting kit-8 and reactive oxygen species(ROS)levels using a dihydroethidium kit.miR-27b-3p,Nrf2,NAD(P)H quinone oxidoreductase 1(NQO1)and heme oxygenase-1(HO-1)mRNA and protein levels were analyzed using reverse transcription quantitative polymerase chain reaction(RT-qPCR)and immunocytofluorescence(ICF),respectively.Western blot analyses were performed to determine nuclear and total Nrf2 protein levels.Nrf2,NQO1,and HO-1 expression levels by RT-qPCR,ICF,or Western blot were further tested after miR-27b-3p overexpression or inhibitor lentiviral transfection.Finally,the expression level of those target genes was analyzed after treating hRPE cells with pyridoxamine.RESULTS:Persistent exposure to high glucose gradually suppressed hRPE Nrf2,NQO1,and HO-1 mRNA and protein levels and increased miR-27b-3p mRNA levels.High glucose also promoted ROS release and inhibited cellular proliferation.Nrf2,NQO1,and HO-1 mRNA levels decreased after miR-27b-3p overexpression and,conversely,both mRNA and protein levels increased after expressing a miR-27b-3p inhibitor.After treating hRPE cells exposed to high glucose with pyridoxamine,ROS levels tended to decreased,proliferation rate increased,Nrf2,NQO1,and HO-1 mRNA and protein levels were upregulated,and miR-27b-3p mRNA levels were suppressed.CONCLUSION:Nrf2 is a downstream target of miR-27b-3p.Furthermore,the miR-27b-3p inhibitor pyridoxamine can alleviate high glucose injury by regulating the miR-27b-3p/Nrf2 axis.
文摘Background: Most data on laser resurfacing have come from studies of people with Fitzpatrick skin types 1 - 3;however, the world’s population is comprised mostly of Fitzpatrick skin types 4 - 6, which are more susceptible to post-inflammatory hyperpigmentation (PIH). Objective: For the purpose of expanding the expertise of plastic surgeons treating patients with darker skin types, this study examined the incidence of PIH in Asians who underwent laser resurfacing, including a histologic arm on fractional ablative resurfacing. Methods & Materials: The clinical study included six subjects of Vietnamese origin who underwent single-depth fractionated CO2 laser resurfacing. The histologic study involved a seventh subject. The MiXto SX®laser with a new scanning handpiece was used, along with magnifying loupes to assess ablative depth after each of three laser passes performed. Photographs were taken at various postoperative intervals. Results: All six clinical subjects showed cosmetic improvement in skin texture and tone with no post-inflammatory hyperpigmentation. In the histologic study, H&E stained sections revealed uniform diathermy. Conclusion: It is possible to significantly reduce PIH in darker skinned subjects through use of a new scanning handpiece and a technique using loupes to assess the depth of ablative resurfacing. The histologic study confirms these findings.
基金Supported by Capital Medical University Scientific Research Grant for Undergraduate Students(No.XSKY2023026).
文摘Age-related macular degeneration(AMD)is a complicated disease that causes irreversible visual impairment.Increasing evidences pointed retinal pigment epithelia(RPE)cells as the decisive cell involved in the progress of AMD,and the function of anti-oxidant capacity of PRE plays a fundamental physiological role.Nuclear factor erythroid 2 related factor 2(Nrf2)is a significant transcription factor in the cellular anti-oxidant system as it regulates the expression of multiple anti-oxidative genes.Its functions of protecting RPE cells against oxidative stress(OS)and ensuing physiological changes,including inflammation,mitochondrial damage and autophagy dysregulation,have already been elucidated.Understanding the roles of upstream regulators of Nrf2 could provide further insight to the OS-mediated AMD pathogenesis.For the first time,this review summarized the reported upstream regulators of Nrf2 in AMD pathogenesis,including proteins and miRNAs,and their underlying molecular mechanisms,which may help to find potential targets via regulating the Nrf2 pathway in the future research and further discuss the existing Nrf2 regulators proved to be beneficial in preventing AMD.