Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellet...Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.展开更多
The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results sh...The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Delta T) and the softening start temperature (T (10%)) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO center dot SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.展开更多
A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlo...A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlorine in the neutron field, the linear relationship between the iron analytical coefficient and total iron content was poor, increasing the error in the quantitative analysis. To solve this problem, gamma-ray self-absorption compensation and a neutron field correction algorithm were proposed, and the experimental results have been corrected using this algorithm. The results show that the linear relationship between the iron analytical coefficient and total iron content was considerably improved after the correction. The linear correlation coefficients reached 0.99 or more.展开更多
It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The le...It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.展开更多
A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced ti...A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced time of 5 h,and CaO content of 2.5wt%,a DRI with a metallization rate of 96.5%was obtained through coal-based direct reduction of ultra-high-grade iron concentrate.Then,an HPI with a Fe purity of 99.95%and C,Si,Mn,and P contents as low as 0.0008wt%,0.0006wt%,0.0014wt%,and 0.0015wt%,respectively,was prepared by smelting separation of the DRI using a smelting temperature of 1625°C,smelting time of 45 min,and CaO content of 9.3wt%.The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard.An HPI with a Fe purity of 99.98wt%can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost.The proposed process shows a promising prospect for application in the future.展开更多
The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examination...The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examinations. Experiments were carried out in the presence and absence of a mixed culture of moderately thermophile microorganisms at 50?C. Chemical leaching experiments were performed in the absence and presence of 0.15 M iron (ferric added medium, ferrous added medium and a mixture medium regulated at 420 mV, Pt. vs. Ag/AgCl). In addition, bioleaching experiments were carried out in the presence and absence of 0.1 M iron (ferric and ferrous added mediua) at pulp density 10% (w/v), inoculated bacteria 20% (v/v), initial pH 1.6, nutrient medium Norris and yeast extract addition 0.02% (w/w). Abiotic leaching tests showed that the addition of iron at low solution redox potentials significantly increased the rate and extent of copper dissolution but when ferric iron was added, despite a higher initial rate of copper dissolution, leaching process stopped. Addition of both ferrous and ferric iron to the bioleaching medium levelled off the copper extraction and had an inhibitory effect which decreased the final redox potential. The monitoring of ferrous iron, ferric iron and copper extraction in leach solutions gave helpful results to understand the behaviour of iron cations during chemical and bacterial leaching processes.展开更多
The kinetics of pressure leaching high iron sphalerite concentrate was studied.The effects of agitation rate,temperature, oxygen partial pressure,initial acid concentration,particle size,iron content in the concentrat...The kinetics of pressure leaching high iron sphalerite concentrate was studied.The effects of agitation rate,temperature, oxygen partial pressure,initial acid concentration,particle size,iron content in the concentrate and concentration of Fe2 +added into the solution on the leaching rate of zinc were examined.The experiment results indicate that if the agitation rate is greater than 600 r/min,its influence on Zn leaching rate is not substantial.A suitable rise in temperature can facilitate the leaching reaction,and the temperature should be controlled at 140-150℃.The increase trend of Zn leaching rate becomes slow when pressure is greater than 1.2 MPa,so the pressure is controlled at 1.2-1.4 MPa.Under the conditions of this study,Zn leaching rate decreases with a rise in the initial sulfuric acid concentration;and Zn leaching rate increases with a rise of iron content in the concentrate and Fe 2+ concentration in the solution.Moreover,the experiment demonstrates that the leaching process follows the surface chemical reaction control kinetic law of“shrinking of unreacted core”.The activation energy for pressure leaching high iron sphalerite concentrate is calculated,and a mathematical model for this pressure leaching is obtained.The model is promising to guide the practical operation of pressure leaching high iron sphalerite concentrate.展开更多
Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding perf...Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.展开更多
Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based o...Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced.展开更多
The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhanci...The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.展开更多
In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,cryst...In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.展开更多
Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reducti...Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction(XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron(Fe) and anosovite(FeTi2O5) to metallic iron(Fe) and perovekite(CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.展开更多
Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC ...Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC used in sintering blends is restricted. In this research, the effects of fine limonite, slake lime, and bentonite particles on the granulation performance of blends containing a high ratio of CSC were studied through granulation test. Based on the test results, the effects of modification of the binding medium on the sintering performance of blends containing a high ratio of CSC were revealed by the sintering pot test. Both the granulation property and sintering performance of blends with a high proportion of CSC were improved by modifying the binding medium.展开更多
The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titan...The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and Ca CO3 in a reductive atmosphere,where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3.The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test.Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate,and the optimum conditions were a CaCO3 dosage of 18 wt%and a reduction temperature of 1400°C.Additionally,scanning electron microscopy–energy dispersive spectrometry(SEM–EDS)analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50μm.Hence,the separation of calcium titanate and metallic iron will be the focus in the future study.展开更多
The processing of iron ore to recover the valuable iron oxide minerals is commonly carried out using spiral concentrators that separate valuable minerals from non-valuable ones on the basis of the specific gravity of ...The processing of iron ore to recover the valuable iron oxide minerals is commonly carried out using spiral concentrators that separate valuable minerals from non-valuable ones on the basis of the specific gravity of minerals. This paper shows that the analysis of the operation of spirals should not only focus on the minerals (as it is usually the case), but should also consider the particle size of these minerals. Indeed, the sampling of two industrial iron ore circuits and the data processing of the resulting measurements show that unexpectedly about 10% of the coarse heavy iron oxide minerals are not recovered by the spirals of the two circuits. Tests conducted by an independent research center confirm this plant observation. The pilot plant tests also show that the wash water flowrate addition may adversely affect the recovery of coarse heavy mineral particles. A mathematical model for the spiral was implemented into a simulator for an iron ore gravity concentration circuit. The simulator shows a potential 0.7% increase of iron recovery by simply changing the strategy used to distribute the wash water between the rougher and the cleaner/recleaner spirals of the circuit. The simulator also shows that the introduction of a hydraulic classifier into the gravity concentration circuit yields a marginal improvement to the performances of the circuit.展开更多
To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the...To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti Nb-bearing Fe concentrate/coal composite pel- let was reduced at temperatures greater than 1100℃. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100~C were analyzed by X-ray diffraction and scanning electron microsco- py-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100℃ for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.展开更多
For complex orebodies in which the valuable metal is carried by several minerals that respond differently to the concentration process, an ore block model should not be characterized solely with elemental assays, as t...For complex orebodies in which the valuable metal is carried by several minerals that respond differently to the concentration process, an ore block model should not be characterized solely with elemental assays, as this information is not sufficient to anticipate the mill performances. Data from an iron ore concentrator is used to demonstrate the idea. A method is then proposed to estimate the mineral contents of ore samples from elemental assays. The method can readily be extended to combine the estimation of the mineral contents in the feed of the mill with an estimation of the recovery of these minerals into the products of the concentrator. These mineral recoveries can subsequently be incorporated into a block model to predict the concentrator response to the processing of an ore block.展开更多
Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.Th...Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.展开更多
To investigate the feasibility of co-sintering of fluxed iron ore with magnetite concentrates, the mineralogical properties of a novel fluxed iron ore were studied using particle size analysis, microscopic morphology ...To investigate the feasibility of co-sintering of fluxed iron ore with magnetite concentrates, the mineralogical properties of a novel fluxed iron ore were studied using particle size analysis, microscopic morphology characterization, and X-ray diffraction Rietveld analysis. Following that, the experiments for granulation performance and basic sintering characteristics were designed under seven different fluxed iron ore ratios, and the integrated ranking of different fluxed iron ore ratios was determined using gray relation analysis. Finally, the results of the industrial trails were combined with the feasibility analysis. Test and experimental results show that the fraction of the fluxed iron ore particles larger than 0.5 mm can account for more than 48%, and the particles have two morphologies: spherical-rough and flaky-smooth. Ca elements are found in the form of calcite (CaCO3) and dolomite (CaMg(CO3)2). The average particle size of granules and powder removal rate can be improved from 2.50 to 3.16 mm and 39.60% to 24.20%, respectively, with the increase in the fluxed iron ore ratio. Furthermore, the fluxed iron ore can improve assimilability and liquid fluidity of magnetite concentrates. In terms of overall granulation performance and sintering characteristics, the fluxed iron ore ratios are graded from best to worst as follows: 12%, 15%, 9%, 18%, 21%, 6% and 3%. The industrial trails show that when the fluxed iron ore ratio is increased, the beneficial effect of the superior sintering characteristics of the fluxed iron ore itself is ideally balanced with the negative effect of the lower amount of additional CaO at 12% ratio, and thus, it is feasible to bring the fluxed iron ore into production at a level of roughly 12%.展开更多
Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carb...Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke frees, are not used extensively in the metallurgical industry because of operational difficu]ties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sin- tering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.展开更多
基金The Key Project of the 9th Five year Plan of Ministry of Science andTechnology!(No .960 40 2 0 2A)the Foundation for Unive
文摘Successfully developed an innovative process of direct reduction of cold bound pellets from iron ore concentrate with a coal based rotary kiln, in comparison with the traditional direct reduction of fired oxide pellets in coal based rotary kilns , possesses such advantages as: shorter flowsheet, lower capital investment, greater economic profit, good quality of direct reduced iron. The key technologies , such as the composite binder and corresponding feasible techniques were employed in practice. A mill utilizing this process and with an annual capacity of 50 thousand ton DRI has been put into operation.
基金financially supported by the National Basic Research Program of China (No. 2012CB720401)the National Natural Science Foundation of China (U1260202)
文摘The basic characteristics of Australian iron ore concentrate (Ore-A) and its effects on sinter properties during a high-limonite sintering process were studied using micro-sinter and sinter pot methods. The results show that the Ore-A exhibits good granulation properties, strong liquid flow capability, high bonding phase strength and crystal strength, but poor assimilability. With increasing Ore-A ratio, the tumbler index and the reduction index (RI) of the sinter first increase and then decrease, whereas the softening interval (Delta T) and the softening start temperature (T (10%)) of the sinter exhibit the opposite behavior; the reduction degradation index (RDI+3.15) of the sinter increases linearly, but the sinter yield exhibits no obvious effects. With increasing Ore-A ratio, the distribution and crystallization of the minerals are improved, the main bonding phase first changes from silico-ferrite of calcium and aluminum (SFCA) to kirschsteinite, silicate, and SFCA and then transforms to 2CaO center dot SiO2 and SFCA. Given the utilization of Ore-A and the improvement of the sinter properties, the Ore-A ratio in the high-limonite sintering process is suggested to be controlled at approximately 6wt%.
基金supported by the National Key Scientific Instrument and Equipment Development Projects(No.2012YQ240121)Liaoning science and technology project(No.2017220010)Changchun Science and Technology Bureau Local Company and College(University,Institution)Cooperation Projects(No.17DY023)
文摘A prompt gamma-neutron activation analysis(PGNAA) system was developed to detect the iron content of iron ore concentrate. Because of the self-absorption effect of gamma-rays and neutrons, and the interference of chlorine in the neutron field, the linear relationship between the iron analytical coefficient and total iron content was poor, increasing the error in the quantitative analysis. To solve this problem, gamma-ray self-absorption compensation and a neutron field correction algorithm were proposed, and the experimental results have been corrected using this algorithm. The results show that the linear relationship between the iron analytical coefficient and total iron content was considerably improved after the correction. The linear correlation coefficients reached 0.99 or more.
基金Project(51404307)supported by the National Natural Science Foundation of ChinaProject(2014CB643400)supported by the National Basic Research Program of China
文摘It is taken as a novel prospective process to treat iron concentrate from hydrometallurgical zinc kiln slag forcomprehensive utilization of valuable metals by a hydrochloric acid leaching-spray pyrolysis method.The leaching mechanism ofdifferent valuable metals was studied.The results revealed that the leaching rates of Ag,Pb,Cu,Fe,As and Zn were99.91%,99.25%,95.12%,90.15%,87.58%and58.15%,respectively with6mol/L HCl and L/S ratio of10:1at60°C for120min.The actionof SiO2in leaching solution was also studied.The results showed that the precipitation and settlement of SiO2(amorphous)adsorbedpart of metal ions in solution,which greatly inhibited the leaching of Cu,Fe,As and Zn,so it is crucial to control the precipitation ofamorphous SiO2.
基金the National Natural Science Foundation of China(No.51904063)the Fundamental Research Funds for the Central Universities,China(Nos.N172503016,N172502005,and N172506011)the China Postdoctoral Science Foundation(No.2018M640259).
文摘A new process for preparing high-purity iron(HPI)was proposed,and it was investigated by laboratory experiments and pilot tests.The results show that under conditions of a reduced temperature of 1075°C,reduced time of 5 h,and CaO content of 2.5wt%,a DRI with a metallization rate of 96.5%was obtained through coal-based direct reduction of ultra-high-grade iron concentrate.Then,an HPI with a Fe purity of 99.95%and C,Si,Mn,and P contents as low as 0.0008wt%,0.0006wt%,0.0014wt%,and 0.0015wt%,respectively,was prepared by smelting separation of the DRI using a smelting temperature of 1625°C,smelting time of 45 min,and CaO content of 9.3wt%.The product of the pilot test with a scale of 0.01 Mt/a had a lower impurity content than the Chinese industry standard.An HPI with a Fe purity of 99.98wt%can be produced through the direct reduction?smelting separation of ultra-high-grade iron concentrate at relatively low cost.The proposed process shows a promising prospect for application in the future.
文摘The effects of ferrous and ferric iron as well as redox potential on copper and iron extraction from the copper flotation concentrate of Sarcheshmeh, Kerman, Iran, were evaluated using shake flask leaching examinations. Experiments were carried out in the presence and absence of a mixed culture of moderately thermophile microorganisms at 50?C. Chemical leaching experiments were performed in the absence and presence of 0.15 M iron (ferric added medium, ferrous added medium and a mixture medium regulated at 420 mV, Pt. vs. Ag/AgCl). In addition, bioleaching experiments were carried out in the presence and absence of 0.1 M iron (ferric and ferrous added mediua) at pulp density 10% (w/v), inoculated bacteria 20% (v/v), initial pH 1.6, nutrient medium Norris and yeast extract addition 0.02% (w/w). Abiotic leaching tests showed that the addition of iron at low solution redox potentials significantly increased the rate and extent of copper dissolution but when ferric iron was added, despite a higher initial rate of copper dissolution, leaching process stopped. Addition of both ferrous and ferric iron to the bioleaching medium levelled off the copper extraction and had an inhibitory effect which decreased the final redox potential. The monitoring of ferrous iron, ferric iron and copper extraction in leach solutions gave helpful results to understand the behaviour of iron cations during chemical and bacterial leaching processes.
基金Project(2002GG01)supported by Yunnan Metallurgical General Company,China
文摘The kinetics of pressure leaching high iron sphalerite concentrate was studied.The effects of agitation rate,temperature, oxygen partial pressure,initial acid concentration,particle size,iron content in the concentrate and concentration of Fe2 +added into the solution on the leaching rate of zinc were examined.The experiment results indicate that if the agitation rate is greater than 600 r/min,its influence on Zn leaching rate is not substantial.A suitable rise in temperature can facilitate the leaching reaction,and the temperature should be controlled at 140-150℃.The increase trend of Zn leaching rate becomes slow when pressure is greater than 1.2 MPa,so the pressure is controlled at 1.2-1.4 MPa.Under the conditions of this study,Zn leaching rate decreases with a rise in the initial sulfuric acid concentration;and Zn leaching rate increases with a rise of iron content in the concentrate and Fe 2+ concentration in the solution.Moreover,the experiment demonstrates that the leaching process follows the surface chemical reaction control kinetic law of“shrinking of unreacted core”.The activation energy for pressure leaching high iron sphalerite concentrate is calculated,and a mathematical model for this pressure leaching is obtained.The model is promising to guide the practical operation of pressure leaching high iron sphalerite concentrate.
基金Project(2012zzts101)supported by the Fundamental Research Funds for the Central Universities,China
文摘Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.
基金the financial support of the National Natural Science Foundation of China (Grant Nos. 51274033 and 51374024)
文摘Although the total amount of boron resources in China is high, the grades of these resources are low. The authors have already proposed a new comprehensive utilization process of boron-bearing iron concentrate based on the iron nugget process. The present work describes a further optimization of the conditions used in the previous study. The effects of CaO on the reduction-melting behavior and properties of the boron-rich slag are presented. CaO improved the reduction of boron-bearing iron concentrate/carbon composite pellets when its content was less than lwt%. Melting separation of the composite pellets became difficult with the CaO content increased. The sulfur content of the iron nugget gradually decreased from 0.16wt% to 0.046wt% as the CaO content of the pellets increased from 1wt% to 5wt%. CaO negatively affected the iron yield and boron extraction efficiency of the boron-rich slag. The mineral phase evolution of the boron-rich slag during the reduction-melting separation of the composite pellets with added CaO was also deduced.
基金Project(50725416) supported by the National Science Fund for Distinguished Young Scholars
文摘The effect of composite agglomeration process(CAP) on fluoric iron concentrates sintering was investigated.The yield and quality of the sinter are greatly improved when using CAP assisted with heat airflow and enhancing magnesium oxide(MgO) contents.For conventional sintering of fluoric iron concentrate,due to lower viscosity of binding phase and higher fluidity of liquid phase,the sinter is formed with large thin-walled holes and the strength of the sinter is deteriorated consequently.The novel process forms composite agglomerate in which acid pellets are embedded in basic sinter.The pellets are solid with interconnecting crystals of hematite(Fe2O3) and magnetic(Fe3O4).For basic sintering,after adding MgO,the viscosity of the melting phase increases and the fluidity decreases;and calcium and aluminum silico-ferrites and magnesium ferrite are formed with perfect crystals and good sintering microstructure.
基金Project(FRF-TP-16-019A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51274033)supported by the National Natural Science Foundation of China
文摘In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.
基金financially supported by the National Natural Science Foundation of China(No.51674018)
文摘Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate(VTC) were investigated. It was found that calcium compounds had great effects on the metallization rate of the reduction product, the order of the metallization rate of reduction product being CaCO3 > no additive > CaSO4 > CaCl2, which indicated that the addition of CaCO3 was more conducive to promoting the reduction of iron than other calcium compounds. Gas analysis showed that there were mainly two processes in the carbothermic reduction of VTC, a solid–solid and a solid–gas reaction. The concentrations of CO and CO2 were highest when CaCO3 was added, while that in a roasting system decreased the most when CaCl2 was added. X-ray diffraction(XRD) analysis showed that calcium compounds could change the reduction process of ilmenite in VTC. The phase compositions of the reduction products were changed from metallic iron(Fe) and anosovite(FeTi2O5) to metallic iron(Fe) and perovekite(CaTiO3) when calcium compounds were added. Additionally, CaSO4 and CaCl2 could significantly promote the growth of metallic iron particles, though the existence of Fe-bearing Mg2TiO4 in reduction products was not conducive to the reduction of iron. The formation of FeS would further hinder the reduction of iron after adding CaSO4.
基金financially supported by the National Natural Science Foundation of China (No. 51474161)the Hunan Provincial Co-innovation Center for Clean and Efficient Utilization of Strategic Metal Mineral Resources
文摘Canadian specularite concentrate(CSC) possesses high total iron grade and low impurity content. However, due to the poor granulating performance and weak reactivity of CSC at high temperature, the proportion of CSC used in sintering blends is restricted. In this research, the effects of fine limonite, slake lime, and bentonite particles on the granulation performance of blends containing a high ratio of CSC were studied through granulation test. Based on the test results, the effects of modification of the binding medium on the sintering performance of blends containing a high ratio of CSC were revealed by the sintering pot test. Both the granulation property and sintering performance of blends with a high proportion of CSC were improved by modifying the binding medium.
基金the National Natural Science Foundation of China(No.51674018)。
文摘The formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate(VTC)by adding CaCO3 was investigated.Thermodynamic analysis was employed to show the feasibility of calcium titanate formation by the reaction of ilmenite and Ca CO3 in a reductive atmosphere,where ilmenite is more easily reduced by CO or carbon in the presence of CaCO3.The effects of CaCO3 dosage and reduction temperature on the phase transformation and metallization degree were also investigated in an actual roasting test.Appropriate increase of CaCO3 dosages and reduction temperatures were found to be conducive to the formation of calcium titanate,and the optimum conditions were a CaCO3 dosage of 18 wt%and a reduction temperature of 1400°C.Additionally,scanning electron microscopy–energy dispersive spectrometry(SEM–EDS)analysis shows that calcium titanate produced via the carbothermic reduction of VTC by CaCO3 addition was of higher purity with particle size approximately 50μm.Hence,the separation of calcium titanate and metallic iron will be the focus in the future study.
文摘The processing of iron ore to recover the valuable iron oxide minerals is commonly carried out using spiral concentrators that separate valuable minerals from non-valuable ones on the basis of the specific gravity of minerals. This paper shows that the analysis of the operation of spirals should not only focus on the minerals (as it is usually the case), but should also consider the particle size of these minerals. Indeed, the sampling of two industrial iron ore circuits and the data processing of the resulting measurements show that unexpectedly about 10% of the coarse heavy iron oxide minerals are not recovered by the spirals of the two circuits. Tests conducted by an independent research center confirm this plant observation. The pilot plant tests also show that the wash water flowrate addition may adversely affect the recovery of coarse heavy mineral particles. A mathematical model for the spiral was implemented into a simulator for an iron ore gravity concentration circuit. The simulator shows a potential 0.7% increase of iron recovery by simply changing the strategy used to distribute the wash water between the rougher and the cleaner/recleaner spirals of the circuit. The simulator also shows that the introduction of a hydraulic classifier into the gravity concentration circuit yields a marginal improvement to the performances of the circuit.
基金financial support of the Fundamental Research Funds for the Central Universities (FRF-TP-16-019A1)the State Key Laboratory of Advanced Metallurgy (41617007), University of Science and Technology Beijing
文摘To support the development of technology to utilize low-grade Ti-Nb-bearing Fe concentrate, the reduction of the concentrate by coal was systematically investigated in the present paper. A liquid phase formed when the Ti Nb-bearing Fe concentrate/coal composite pel- let was reduced at temperatures greater than 1100℃. The addition of CaCO3 improved the reduction rate when the slag basicity was less than 1.0 and inhibited the formation of the liquid phase. Mechanical milling obviously increased the metallization degree compared with that of the standard pellet when reduced under the same conditions. Evolution of the mineral phase composition and microstructure of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet at 1100~C were analyzed by X-ray diffraction and scanning electron microsco- py-energy-dispersive spectroscopy. The volume shrinkage value of the reduced Ti-Nb-bearing Fe concentrate/coal composite pellet with a basicity of 1.0 was approximately 35.2% when the pellet was reduced at 1100℃ for 20 min, which enhanced the external heat transfer to the lower layers when reduced in a practical rotary hearth furnace. The present work provides key parameters and mechanism understanding for the development of carbothermic reduction technology of a Ti-Nb-bearing Fe concentrate incorporated in a pyrometallurgical utilization flow sheet.
文摘For complex orebodies in which the valuable metal is carried by several minerals that respond differently to the concentration process, an ore block model should not be characterized solely with elemental assays, as this information is not sufficient to anticipate the mill performances. Data from an iron ore concentrator is used to demonstrate the idea. A method is then proposed to estimate the mineral contents of ore samples from elemental assays. The method can readily be extended to combine the estimation of the mineral contents in the feed of the mill with an estimation of the recovery of these minerals into the products of the concentrator. These mineral recoveries can subsequently be incorporated into a block model to predict the concentrator response to the processing of an ore block.
基金supported by the Science and Technology Special Plan Project from China Minmetals Group (No.2020ZXA01)the International Exchange and Growth Program for Young Teachers (No.QNXM20220061)the National Key Research and Development Program of China (No.2022YFC2906100).
文摘Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.
基金supported by the National Natural Science Foundation of China(52174291)the Beijing New-star Plan of Science and Technology(Z211100002121115)+2 种基金the Central Universities Foundation of China(06500170)the Guangdong Basic and Applied Basic Research Fund Joint Regional Funds-Youth Foundation Projects(2020A1515111008)the China Postdoctoral Science Foundation(2021M690369).
文摘To investigate the feasibility of co-sintering of fluxed iron ore with magnetite concentrates, the mineralogical properties of a novel fluxed iron ore were studied using particle size analysis, microscopic morphology characterization, and X-ray diffraction Rietveld analysis. Following that, the experiments for granulation performance and basic sintering characteristics were designed under seven different fluxed iron ore ratios, and the integrated ranking of different fluxed iron ore ratios was determined using gray relation analysis. Finally, the results of the industrial trails were combined with the feasibility analysis. Test and experimental results show that the fraction of the fluxed iron ore particles larger than 0.5 mm can account for more than 48%, and the particles have two morphologies: spherical-rough and flaky-smooth. Ca elements are found in the form of calcite (CaCO3) and dolomite (CaMg(CO3)2). The average particle size of granules and powder removal rate can be improved from 2.50 to 3.16 mm and 39.60% to 24.20%, respectively, with the increase in the fluxed iron ore ratio. Furthermore, the fluxed iron ore can improve assimilability and liquid fluidity of magnetite concentrates. In terms of overall granulation performance and sintering characteristics, the fluxed iron ore ratios are graded from best to worst as follows: 12%, 15%, 9%, 18%, 21%, 6% and 3%. The industrial trails show that when the fluxed iron ore ratio is increased, the beneficial effect of the superior sintering characteristics of the fluxed iron ore itself is ideally balanced with the negative effect of the lower amount of additional CaO at 12% ratio, and thus, it is feasible to bring the fluxed iron ore into production at a level of roughly 12%.
基金financially supported by the Ministry of Steel,Government of India
文摘Iron ore microfines and concentrate have very limited uses in sintering processes. They are used in pelletization; however, this process is cost intensive. Furthermore, the microfines of non-coking coal and other carbon-bearing materials, e.g., blast-furnace flue dust (BFD) and coke frees, are not used extensively in the metallurgical industry because of operational difficu]ties and handling problems. In the present work, to utilize these microfines, coal composite iron oxide micropellets (2-6 mm in size) were produced through an innovative technique in which lime and molasses were used as binding materials in the micropellets. The micropellets were subsequently treated with CO2 or the industrial waste gas to induce the chemical bond formation. The results show that, at a very high carbon level of 22wt% (38wt% coal), the cold crushing strength and abrasion index of the micropellets are 2.5-3 kg/cm2 and 5wt%-9wt%, respectively; these values indicate that the pellets are suitable for cold handling. The developed micropellets have strong potential as a heat source in smelting reduction in iron making and sintering to reduce coke breeze. The micropellets produced with BFD and coke fines (8wt%-12wt%) were used in iron ore sin- tering and were observed to reduce the coke breeze consumption by 3%-4%. The quality of the produced sinter was at par with that of the conventional blast-furnace sinter.