The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic material...The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method.展开更多
Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon c...Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.展开更多
Based on the observed surface suspended matter in the East China Sea in February 2007 and June 2015, an empirical model was established using L1 b's band 4 data to retrieve surface suspended matter from the Modera...Based on the observed surface suspended matter in the East China Sea in February 2007 and June 2015, an empirical model was established using L1 b's band 4 data to retrieve surface suspended matter from the Moderate Resolution Imagine Spectroradiometer Terra imagery. The squared correlation coefficient is 0.8358, and the root mean square error is 0.4285 mg L-1. The model reflects the distribution characteristics of surface suspended matter in the inner shelf of the East China Sea. In this paper, the satellite images of the study area were retrieved in January from 2001 to 2015, and the monthly distribution of surface suspended matter were obtained. The inter-annual distribution of the study area is similar, and the concentration of surface suspended matter is higher near the shore than offshore. A large amount of surface suspended matter is transported southeast under the influence of Zhejiang and Fujian coastal current and Taiwan warm current. Only a small amount of surface suspension can reach the Kuroshio area. The surface suspended matter concentration changes obviously near the estuary because of the effect of differences in the flux of the Yangtze River. Meanwhile, winter monsoon, temperature front, El Ni?o events, and other factors affect the distribution of surface suspended matter in 100 m isobath to coastal water but minimally influence the distribution in 100 m isobath to deep sea.展开更多
A cylindrical hollow cathode discharge (HCD) in CH4/Ar gas mixture at pressure of 20-30 Pa was used to deposit diamond-like carbon (DLC) films on the inner surface of a stainless steel tube. The characteristics of...A cylindrical hollow cathode discharge (HCD) in CH4/Ar gas mixture at pressure of 20-30 Pa was used to deposit diamond-like carbon (DLC) films on the inner surface of a stainless steel tube. The characteristics of the HCD including the voltage-current curves, the plasma im- ages and the optical emission spectrum (OES) were measured in Ar and CHn/Ar mixtures. The properties of DLC films prepared under different conditions were analyzed by means of Raman spectroscopy and scanning electron microscopy (SEM). The results show that the electron exci- tation temperature of HCD plasma is about 2400 K. DLC films can be deposited on the inner surface of tubes. The ratio of sp3/sp2 bonds decreases with the applied voltage and the deposition time. The optimizing CH4 content was found to be around CH4/Ar =1/5 for good quality of DLC films in the present system.展开更多
The inner surface roughness of a capillary is investigated by the reflectivity of x-rays penetrating through the capillary. The results are consistent with the data from atomic force microscope (AFM). The roughness ...The inner surface roughness of a capillary is investigated by the reflectivity of x-rays penetrating through the capillary. The results are consistent with the data from atomic force microscope (AFM). The roughness measured by this new method can reach the order of angstroms with high quality capillaries.展开更多
The temperature of bush inner surface temperature is measured by using infrared thermometer and transparent bearing,and temperature rise is measured by using thermocouple. The influence of rotating speed and axial loc...The temperature of bush inner surface temperature is measured by using infrared thermometer and transparent bearing,and temperature rise is measured by using thermocouple. The influence of rotating speed and axial location on the bush inner surface temperature is studied,and the influence of supply pressure and rotating speed on the temperature rise is analyzed. The results show the bush inner surface temperature and temperature rise of spiral oil wedge hydrodynamic bearing increase with the increase of rotation speed. In axial direction,the temperature is higher around the oil return hole. The temperature rise decreases with the increase of supply pressure. The highest temperature of bush inner surface and temperature rise are higher at higher speed,so the temperature rise is the fundamental reason which restricts the increase of rotation speed for high speed sleeve bearing.展开更多
In order to improve the length of plasma in a whole tube and mechanical properties of Cr films deposited on the inner surface of the tube, a high-power impulse magnetron sputtering coating method with a planar cathode...In order to improve the length of plasma in a whole tube and mechanical properties of Cr films deposited on the inner surface of the tube, a high-power impulse magnetron sputtering coating method with a planar cathode target and auxiliary anode was proposed. The auxiliary anode was placed near the tube tail to attract plasma into the inner part of the tube. Cr films were deposited on the inner wall of a 20# carbon steel tube with a diameter of 40 mm and length of 120 mm. The influence of auxiliary anode voltage on the discharge characteristics of the Cr target, and the structure and mechanical properties of Cr films deposited on the inner surface of the tube were explored. With higher auxiliary anode voltage, an increase in substrate current was observed, especially in the tube tail. The thickness uniformity, compactness, hardness and H/E ratios of the Cr films deposited on the inner surface of the tube increased with the increase in auxiliary anode voltage. The Cr films deposited with auxiliary anode voltage of 60 V exhibited the highest hardness of 9.6 GPa and the lowest friction coefficient of 0.68.展开更多
Inner surface coating for tubular samples was realized by the grid enhanced plasma source ion implantation (GEPSII) method. In the GEPSII system, two electrodes, a central rod electrode and a coaxial grid electrode ...Inner surface coating for tubular samples was realized by the grid enhanced plasma source ion implantation (GEPSII) method. In the GEPSII system, two electrodes, a central rod electrode and a coaxial grid electrode were coaxially assembled inside the tube. Plasma was generated between the electrodes by a radio-frequency (RF) oscillating power source. Plasma then diffused through the grid and realized inner surface ion implantation by a negative high voltage applied to the tube. The plasma was then divided, by the grid, into two regions, namely the source plasma region and the diffused plasma region. The plasma's self-bias between two RF power source electrodes was measured. At the same time, the electron temperature and plasma density in the GEPSII system were measured by a scattering spectrometer. Results showed that the plasma properties of the two regions were entirely different; the plasma self-bias, which might greatly affect the sputtering rate of the central titanium electrode, depended on the electrode structure, gas pressure and RF power.展开更多
The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is model...The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.展开更多
The effect of inner-surface roughness of conical targets on the generation of fast electrons in the laser-cone interaction is investigated using particle-in-cell simulation. It is found that the surface roughness can ...The effect of inner-surface roughness of conical targets on the generation of fast electrons in the laser-cone interaction is investigated using particle-in-cell simulation. It is found that the surface roughness can reduce the fast-electron number (in the energy range E 〉 1 MeV) and energy, as compared to that from a cone with smooth inner wall. A scaling law for the laser reflectivity based on the vacuum-heating model is derived. Both theory and simulation indicate that laser reflection increases with the height-to-width ratio of the periodic inner surface structure and approaches that of a smooth cone as this ratio becomes zero.展开更多
A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging...A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.展开更多
2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气...2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气候指数、美国国家环境预报中心/国家大气科学研究中心(National Center for Enviromental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料和美国国家海洋和大气管理局(National Oceanic and Atmospheric Admin⁃istration,NOAA)逐月海表温度资料,分析2022年7月内蒙古中西部地区涝-旱转折事件的成因。结果表明:(1)2022年7月内蒙古中西部地区降水量严重偏少,为该地区1991年以来同期降水最少、气象干旱最为严重。(2)7月1—11日降水相对偏多,冷空气路径偏北且强度较弱,西太平洋副热带高压强度偏弱,位置偏北、偏西,冷暖空气在内蒙古中西部地区交绥,加之这一时段高空西风急流位置偏北,内蒙古中西部位于急流轴以南,有利于高层辐散和上升运动发展。7月12—31日降水明显偏少,环流经向度加大,冷空气活动路径偏南且强度增强,西太平洋副热带高压强度偏强且位置明显偏南,不利于水汽输送,加之高空西风急流位置偏南,内蒙古中西部位于急流轴以北,不利于高层辐散和上升运动发展;7月中旬后期至下旬高空西风急流南北向扰动偏强有利于激发东亚—西北太平洋经向遥相关波列,使得西太平洋副热带高压位置偏南从而导致降水偏少。(3)日本海至北太平洋西北部地区的海温异常是影响内蒙古中西部地区降水多寡的重要外强迫信号之一。2022年7月该海区海温异常偏高,其上空激发的气旋式环流减弱了南方暖湿水汽的经向输送,是导致内蒙古中西部降水由涝转旱的原因之一。展开更多
为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evalua...为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evaluation Index,SMAEEI)以及矿区生态累积效应定量评估模型。选取内蒙古胜利矿区为研究区,量化分析1986—2020年区域生态环境质量和生态累积效应的时空分布规律,以及主要人类活动的生态累积效应差异。结果表明:①SMAEEI适用于半干旱草原露天矿区,能客观呈现各地类生态环境质量高低顺序。35 a间研究区生态环境质量呈极显著下降趋势,且其空间差异显著减弱。露天矿场、城镇扩张区、锡林河湿地及北侧草地生态环境质量出现极显著、显著的退化趋势。②半干旱草原露天矿区生态累积效应定量评估模型能剔除气候因素对生态系统的耦合影响,分离并量化人类活动对矿区生态系统的累积效应,揭示累积的方向、程度和空间范围。35 a间研究区生态服务价值累积量(Change of Ecosystem Service Value Cumulant,COESVC)共减少1186157.03万元,出现负向生态累积效应,生态系统服务功能下降。高度、中度负向累积区集中在湿地和草地退化区、城镇区、露天矿场。③露天开采、城镇建设造成的单位面积负向生态累积效应最明显,前者在单位时间内带来的负向累积变化最剧烈,后者负向累积效应的局部影响程度和偏离度最大;放牧活动引起的负向生态累积效应影响范围最广、总量最大,但局部影响程度最小,生态系统服务功能较其余人类活动更稳定。研究成果可将矿区人类活动引起的生态环境实物量变动转化为价值量描述,为采用货币形式测算矿区生产生活行为的环境损害成本提供可行方法。展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12172048 and 12027901)the National Science and Technology Major Project of China(Nos.2019-Ⅶ-0007-0147 and 2017-Ⅵ-0020-0093)。
文摘The surface fracture toughness is an important mechanical parameter for studying the failure behavior of air plasma sprayed(APS)thermal barrier coatings(TBCs).As APS TBCs are typical multilayer porous ceramic materials,the direct applications of the traditional single edge notched beam(SENB)method that ignores those typical structural characters may cause errors.To measure the surface fracture toughness more accurately,the effects of multilayer and porous characters on the fracture toughness of APS TBCs should be considered.In this paper,a modified single edge V-notched beam(MSEVNB)method with typical structural characters is developed.According to the finite element analysis(FEA),the geometry factor of the multilayer structure is recalculated.Owing to the narrower V-notches,a more accurate critical fracture stress is obtained.Based on the Griffith energy balance,the reduction of the crack surface caused by micro-defects is corrected.The MSEVNB method can measure the surface fracture toughness more accurately than the SENB method.
基金Projects(51275302,51005154)supported by the National Natural Science Foundation of China
文摘Deposition parameters that have great influences on hot filament chemical vapor deposition (HFCVD) diamond films growth on inner hole surfaces of WC?Co substrates mainly include the substrate temperature (t), carbon content (φ), total pressure (p) and total mass flow (F). Taguchi method was used for the experimental design in order to study the combined effects of the four parameters on the properties of as-deposited diamond films. A new figure-of-merit (FOM) was defined to assess their comprehensive performance. It is clarified thatt,φandp all have significant and complicated effects on the performance of the diamond film and the FOM, which also present some differences as compared with the previous studies on CVD diamond films growth on plane or external surfaces. Aiming to deposit HFCVD diamond films with the best comprehensive performance, the key deposition parameters were finally optimized as:t=830 °C,φ=4.5%,p=4000 Pa,F=800 mL/min.
基金supported by the National Natural Science Foundation of China (Nos. 41606066 and 41476030)the Project of Taishan Scholar
文摘Based on the observed surface suspended matter in the East China Sea in February 2007 and June 2015, an empirical model was established using L1 b's band 4 data to retrieve surface suspended matter from the Moderate Resolution Imagine Spectroradiometer Terra imagery. The squared correlation coefficient is 0.8358, and the root mean square error is 0.4285 mg L-1. The model reflects the distribution characteristics of surface suspended matter in the inner shelf of the East China Sea. In this paper, the satellite images of the study area were retrieved in January from 2001 to 2015, and the monthly distribution of surface suspended matter were obtained. The inter-annual distribution of the study area is similar, and the concentration of surface suspended matter is higher near the shore than offshore. A large amount of surface suspended matter is transported southeast under the influence of Zhejiang and Fujian coastal current and Taiwan warm current. Only a small amount of surface suspension can reach the Kuroshio area. The surface suspended matter concentration changes obviously near the estuary because of the effect of differences in the flux of the Yangtze River. Meanwhile, winter monsoon, temperature front, El Ni?o events, and other factors affect the distribution of surface suspended matter in 100 m isobath to coastal water but minimally influence the distribution in 100 m isobath to deep sea.
基金supported by National Natural Science Foundation of China(No.11005009)
文摘A cylindrical hollow cathode discharge (HCD) in CH4/Ar gas mixture at pressure of 20-30 Pa was used to deposit diamond-like carbon (DLC) films on the inner surface of a stainless steel tube. The characteristics of the HCD including the voltage-current curves, the plasma im- ages and the optical emission spectrum (OES) were measured in Ar and CHn/Ar mixtures. The properties of DLC films prepared under different conditions were analyzed by means of Raman spectroscopy and scanning electron microscopy (SEM). The results show that the electron exci- tation temperature of HCD plasma is about 2400 K. DLC films can be deposited on the inner surface of tubes. The ratio of sp3/sp2 bonds decreases with the applied voltage and the deposition time. The optimizing CH4 content was found to be around CH4/Ar =1/5 for good quality of DLC films in the present system.
基金supported by the Natural Science Foundation of Beijing,China (Grant No. 1102019)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003120010)
文摘The inner surface roughness of a capillary is investigated by the reflectivity of x-rays penetrating through the capillary. The results are consistent with the data from atomic force microscope (AFM). The roughness measured by this new method can reach the order of angstroms with high quality capillaries.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51305242)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(Grant No.2013RCJJ014)
文摘The temperature of bush inner surface temperature is measured by using infrared thermometer and transparent bearing,and temperature rise is measured by using thermocouple. The influence of rotating speed and axial location on the bush inner surface temperature is studied,and the influence of supply pressure and rotating speed on the temperature rise is analyzed. The results show the bush inner surface temperature and temperature rise of spiral oil wedge hydrodynamic bearing increase with the increase of rotation speed. In axial direction,the temperature is higher around the oil return hole. The temperature rise decreases with the increase of supply pressure. The highest temperature of bush inner surface and temperature rise are higher at higher speed,so the temperature rise is the fundamental reason which restricts the increase of rotation speed for high speed sleeve bearing.
基金financial support from National Natural Science Foundation of China(Nos.12075071 and 11875119)Heilongjiang Touyan Innovation Team Program(HITTY-20190013)。
文摘In order to improve the length of plasma in a whole tube and mechanical properties of Cr films deposited on the inner surface of the tube, a high-power impulse magnetron sputtering coating method with a planar cathode target and auxiliary anode was proposed. The auxiliary anode was placed near the tube tail to attract plasma into the inner part of the tube. Cr films were deposited on the inner wall of a 20# carbon steel tube with a diameter of 40 mm and length of 120 mm. The influence of auxiliary anode voltage on the discharge characteristics of the Cr target, and the structure and mechanical properties of Cr films deposited on the inner surface of the tube were explored. With higher auxiliary anode voltage, an increase in substrate current was observed, especially in the tube tail. The thickness uniformity, compactness, hardness and H/E ratios of the Cr films deposited on the inner surface of the tube increased with the increase in auxiliary anode voltage. The Cr films deposited with auxiliary anode voltage of 60 V exhibited the highest hardness of 9.6 GPa and the lowest friction coefficient of 0.68.
基金National Natural Science Foundation of China (No.10705056)the open fund of Laboratory of Printing and Packaging Material and Technology,Beijing Area Key Laboratory of China (No.KF200703)+1 种基金the research fund of Central University of Nationalities of China (No.CUN0245)the National 985 Program of China
文摘Inner surface coating for tubular samples was realized by the grid enhanced plasma source ion implantation (GEPSII) method. In the GEPSII system, two electrodes, a central rod electrode and a coaxial grid electrode were coaxially assembled inside the tube. Plasma was generated between the electrodes by a radio-frequency (RF) oscillating power source. Plasma then diffused through the grid and realized inner surface ion implantation by a negative high voltage applied to the tube. The plasma was then divided, by the grid, into two regions, namely the source plasma region and the diffused plasma region. The plasma's self-bias between two RF power source electrodes was measured. At the same time, the electron temperature and plasma density in the GEPSII system were measured by a scattering spectrometer. Results showed that the plasma properties of the two regions were entirely different; the plasma self-bias, which might greatly affect the sputtering rate of the central titanium electrode, depended on the electrode structure, gas pressure and RF power.
基金supported by National Natural Science Foundation of China(Nos.50725519,51271048,51321004)
文摘The inner surface modification process by plasma-based low-energy ion implantation(PBLEII)with an electron cyclotron resonance(ECR)microwave plasma source located at the central axis of a cylindrical tube is modeled to optimize the low-energy ion implantation parameters for industrial applications.In this paper,a magnetized plasma diffusion fluid model has been established to describe the plasma nonuniformity caused by plasma diffusion under an axial magnetic field during the pulse-off time of low pulsed negative bias.Using this plasma density distribution as the initial condition,a sheath collisional fluid model is built up to describe the sheath evolution and ion implantation during the pulse-on time.The plasma nonuniformity at the end of the pulse-off time is more apparent along the radial direction compared with that in the axial direction due to the geometry of the linear plasma source in the center and the difference between perpendicular and parallel plasma diffusion coefficients with respect to the magnetic field.The normalized nitrogen plasma densities on the inner and outer surfaces of the tube are observed to be about 0.39 and 0.24,respectively,of which the value is 1 at the central plasma source.After a 5μs pulse-on time,in the area less than 2 cm from the end of the tube,the nitrogen ion implantation energy decreases from 1.5 keV to 1.3 keV and the ion implantation angle increases from several degrees to more than 40°;both variations reduce the nitrogen ion implantation depth.However,the nitrogen ion implantation dose peaks of about 2×10^(10)-7×10^(10)ions/cm^2 in this area are 2-4 times higher than that of 1.18×10^(10)ions/cm^2 and 1.63×10^(10)ions/cm^2 on the inner and outer surfaces of the tube.The sufficient ion implantation dose ensures an acceptable modification effect near the end of the tube under the low energy and large angle conditions for nitrogen ion implantation,because the modification effect is mainly determined by the ion implantation dose,just as the mass transfer process in PBLEII is dominated by low-energy ion implantation and thermal diffusion.Therefore,a comparatively uniform surface modification by the low-energy nitrogen ion implantation is achieved along the cylindrical tube on both the inner and outer surfaces.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11175030,11175029,91230205,and 11375032)the National High-Tech ICF Committee of China,the National Basic Research Program of China(Grant Nos.2008CB717806 and 2011CB808104)the Science and Technology Foundation of China Academy of Engineering Physics(Grant No.2011A0102008)
文摘The effect of inner-surface roughness of conical targets on the generation of fast electrons in the laser-cone interaction is investigated using particle-in-cell simulation. It is found that the surface roughness can reduce the fast-electron number (in the energy range E 〉 1 MeV) and energy, as compared to that from a cone with smooth inner wall. A scaling law for the laser reflectivity based on the vacuum-heating model is derived. Both theory and simulation indicate that laser reflection increases with the height-to-width ratio of the periodic inner surface structure and approaches that of a smooth cone as this ratio becomes zero.
基金Project (U0834002) supported by the Key Program of NSFC Guangdong Joint Funds of ChinaProjects (51005079, 20976055) supported by the National Natural Science Foundation of China+1 种基金Project (10451064101005146) supported by the Natural Science Foundation of Guangdong Province, ChinaProject (20100172120001) supported by Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A rotary swaging machine was applied to fabricating pipe reduction for miniature inner grooved copper tube (MIGCT) heat pipes. Compared with conventional swaging method, the axial feed of the designed rotary swaging machine was reached by a constant pushing force. The deformation of grooves in pipe reduced section during rotary swaging was analyzed. The shrinkage and extensibility of pipe reduction were measured and calculated. Furthermore, four aspects, including outer diameter, surface roughness, extensibility and processing time of pipe reduction, which were influenced by the pushing force, were considered. The results show that the tube wall thickness increases gradually along the z-axis at sinking section. However, the outer diameters, surface roughness and micro-cracks at reduced section tend to decrease along the z-axis. Besides, the effect of variation in the pushing force on the extensibility is limited while an increase in the pushing force results in a decrease of surface roughness. Therefore, a large pushing force within the limit is beneficial to pipe reduction manufacturing during rotary swaging process.
文摘2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气候指数、美国国家环境预报中心/国家大气科学研究中心(National Center for Enviromental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料和美国国家海洋和大气管理局(National Oceanic and Atmospheric Admin⁃istration,NOAA)逐月海表温度资料,分析2022年7月内蒙古中西部地区涝-旱转折事件的成因。结果表明:(1)2022年7月内蒙古中西部地区降水量严重偏少,为该地区1991年以来同期降水最少、气象干旱最为严重。(2)7月1—11日降水相对偏多,冷空气路径偏北且强度较弱,西太平洋副热带高压强度偏弱,位置偏北、偏西,冷暖空气在内蒙古中西部地区交绥,加之这一时段高空西风急流位置偏北,内蒙古中西部位于急流轴以南,有利于高层辐散和上升运动发展。7月12—31日降水明显偏少,环流经向度加大,冷空气活动路径偏南且强度增强,西太平洋副热带高压强度偏强且位置明显偏南,不利于水汽输送,加之高空西风急流位置偏南,内蒙古中西部位于急流轴以北,不利于高层辐散和上升运动发展;7月中旬后期至下旬高空西风急流南北向扰动偏强有利于激发东亚—西北太平洋经向遥相关波列,使得西太平洋副热带高压位置偏南从而导致降水偏少。(3)日本海至北太平洋西北部地区的海温异常是影响内蒙古中西部地区降水多寡的重要外强迫信号之一。2022年7月该海区海温异常偏高,其上空激发的气旋式环流减弱了南方暖湿水汽的经向输送,是导致内蒙古中西部降水由涝转旱的原因之一。
文摘为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evaluation Index,SMAEEI)以及矿区生态累积效应定量评估模型。选取内蒙古胜利矿区为研究区,量化分析1986—2020年区域生态环境质量和生态累积效应的时空分布规律,以及主要人类活动的生态累积效应差异。结果表明:①SMAEEI适用于半干旱草原露天矿区,能客观呈现各地类生态环境质量高低顺序。35 a间研究区生态环境质量呈极显著下降趋势,且其空间差异显著减弱。露天矿场、城镇扩张区、锡林河湿地及北侧草地生态环境质量出现极显著、显著的退化趋势。②半干旱草原露天矿区生态累积效应定量评估模型能剔除气候因素对生态系统的耦合影响,分离并量化人类活动对矿区生态系统的累积效应,揭示累积的方向、程度和空间范围。35 a间研究区生态服务价值累积量(Change of Ecosystem Service Value Cumulant,COESVC)共减少1186157.03万元,出现负向生态累积效应,生态系统服务功能下降。高度、中度负向累积区集中在湿地和草地退化区、城镇区、露天矿场。③露天开采、城镇建设造成的单位面积负向生态累积效应最明显,前者在单位时间内带来的负向累积变化最剧烈,后者负向累积效应的局部影响程度和偏离度最大;放牧活动引起的负向生态累积效应影响范围最广、总量最大,但局部影响程度最小,生态系统服务功能较其余人类活动更稳定。研究成果可将矿区人类活动引起的生态环境实物量变动转化为价值量描述,为采用货币形式测算矿区生产生活行为的环境损害成本提供可行方法。