This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext...This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.展开更多
A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in...A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.展开更多
To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the p...To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.展开更多
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation a...By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.展开更多
Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared wi...Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.展开更多
Al-x%Sc-0.11%Zr alloys (x=0, 0.02, 0.05, 0.08, 0.11, 0.15) were produced by a chill cast procedure. The effect of Sc content on the precipitation of Al3(Sc,Zr) during heat treatment at 475 °C for 12 h was stu...Al-x%Sc-0.11%Zr alloys (x=0, 0.02, 0.05, 0.08, 0.11, 0.15) were produced by a chill cast procedure. The effect of Sc content on the precipitation of Al3(Sc,Zr) during heat treatment at 475 °C for 12 h was studied. Nucleation, precipitation and distribution of Al3(Sc,Zr) precipitates were found to be strongly related to the Sc content. With increasing the Sc content, the average radius of the precipitates decreases, while the number density of the precipitates increases, as investigated by transmission electron microscopy (TEM). The distribution of the precipitates becomes more and more homogeneous when the Sc content is increased. The recrystallization resistance of samples that was 90% cold rolled and isothermal annealed for half an hour in the temperature range of 200-600 °C was investigated. The results show that the recrystallization temperature varies from 250 °C for the alloy without Sc to about 600 °C for the alloy containing 0.15% Sc because of the high density of Al3(Sc,Zr) precipitates.展开更多
Floating zone method with optical radiation heating was applied to growing a class of R2PdSi3(R=Pr,Tb and Gd) single crystals due to its containerless melting and high stability of the floating zone.One serious prob...Floating zone method with optical radiation heating was applied to growing a class of R2PdSi3(R=Pr,Tb and Gd) single crystals due to its containerless melting and high stability of the floating zone.One serious problem during the single crystal growth,precipitates of secondary phases,was discussed from the following four parts:precipitates from the raw materials and preparation process,precipitates formed during the growing process,precipitates in the melts and precipitates in the grown crystals.Annealing treatment and composition shift can effectively reduce the precipitates which are not formed during the crystallization but precipitated on post-solidification cooling from the as-grown crystal matrix because of the retrograde solubility of Si.展开更多
This paper investigated the mechanism of precipitation and its influence upon prop-erties of ultra-thin hot strips of low carbon steel produced by CSP techniques using experiment and thermodynamics theory. The experim...This paper investigated the mechanism of precipitation and its influence upon prop-erties of ultra-thin hot strips of low carbon steel produced by CSP techniques using experiment and thermodynamics theory. The experimental results show that there are lots of fine and dispersive precipitates in microstructures. By analysis, most of aluminum nitrides are in grains, while coexisted precipitates of MnS are along grain boundaries. Coexisted precipitates compose cation-vacancy type oxides such as Al2O3 in the core, while MnS is at the fringe of surface. The precipitation behavior of AIN and MnS in the hot strip is studied by thermodynamic calculation. At last, implica-tions between strengthening effect and techniques are analyzed using obtained solubility products.展开更多
The microstructures and properties of hot-rolled low-carbon ferritic steel have been investigated by optical microscopy, field-emission scanning electron microscopy, transmission electron microscopy, and tensile tests...The microstructures and properties of hot-rolled low-carbon ferritic steel have been investigated by optical microscopy, field-emission scanning electron microscopy, transmission electron microscopy, and tensile tests after isothermal transformation from 600°C to 700°C for 60 min. It is found that the strength of the steel decreases with the increment of isothermal temperature, whereas the hole expansion ratio and the fraction of high-angle grain boundaries increase. A large amount of nanometer-sized carbides were homogeneously distributed throughout the material, and fine(Ti, Mo)C precipitates have a significant precipitation strengthening effect on the ferrite phase because of their high density. The nanometer-sized carbides have a lattice parameter of 0.411-0.431 nm. After isothermal transformation at 650°C for 60 min, the ferrite phase can be strengthened above 300 MPa by precipitation strengthening according to the Ashby-Orowan mechanism.展开更多
In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. Atter the experiments, optical micr...In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. Atter the experiments, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to observe the microstructure and fracture morphology. The effects of precipi- tates on the fracture toughness and the crack initiation mechanism induced by inclusions were analyzed. The CTOD result shows that the steel with a lower finishing cooling temperature has a higher fracture toughness. Inchisiom with different shapes and two kinds of precipi- tates with different sizes were observed. It can be concluded that precipitates with different sizes have different effects and mechanisms on the fracture toughness. Distinguished fi'om the earlier researches, inclusions enriched in silicon can be also served as the crack initiation.展开更多
Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were st...Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were studied by optical microscopy, scanning electron microscopy, and electron probe microanalyzer. The ther- modynamics and the effect on the matrix of the formation of carbonitride were also discussed. It was found that niobium carbonitrides are complex Nb(C, N) precipitate distributed on grain boundary and matrix of the hardfacing alloy. Under as-welded condition, primary carbonitride particles were readily precipitated from the hardfacing alloy with large size and morphology as they were formed already during solidification. Under heat treatment condi- tion, a large number of secondary carbonitrides can pre- cipitate out with very fine size and make a great secondary hardening effect on the matrix. As a result, addition of niobium in the hardfacing alloy can prevent the formation of chromium-rich phase on grain boundaries and inter- granular chromium depletion.展开更多
The morphological evolution of the γ' phase in nickel-based superalloy жc6y during various solution heat treatments was investigated. The significant changes of the γ' precipitates were observed in the solu...The morphological evolution of the γ' phase in nickel-based superalloy жc6y during various solution heat treatments was investigated. The significant changes of the γ' precipitates were observed in the solution-treated samples. The coarsening and dissolution of γ' phase simulta-neously occurred at intermediate temperatures. In some areas, the primary precipitates became blunt and the adjacent ones were intercon-nected with each other via a diffuse neck, indicating a coarsening process of the primary γ' population. The coarsening was dominated by the precipitate agglomeration mechanism (PAM) rather than by the well-known Ostwald ripening mechanism. In other areas, the partial dissolu-tion of the γ' precipitates began to occur, spreading gradually from dendrite cores to interdendritic regions. In addition, a flower-like γ' struc-ture was developed during the subsolvus solution treatments. The observable long filaments composed of erraticly shaped precipitates were caused by the heterogeneous nucleation of the cooling precipitates during water quenching.展开更多
The precipitates in P92 steel after long-term service in an ultra-supercritical unit were investigated by field-emission scanning electron microscopy and transmission electron microscopy and were found to mainly consi...The precipitates in P92 steel after long-term service in an ultra-supercritical unit were investigated by field-emission scanning electron microscopy and transmission electron microscopy and were found to mainly consist of M23 C6 carbides,Laves phase,and MX carbonitrides.No Z-phase was observed.M23 C6 carbides and Laves phase were found not only on prior austenite grain boundaries,martensite lath boundaries,and subgrain boundaries but also in lath interiors,where two types of MX carbonitrides—Nb-rich and V-rich particles—were also observed but the "winged" complexes were hardly found.Each kind of precipitate within the martensite laths exhibited multifarious morphologies,suggesting that a morphological change of precipitates occurred during long-term service.The M23 C6 carbides and Laves phase coarsened substantially,and the latter grew faster than the former.However,MX carbonitrides exhibited a relatively low coarsening rate.The effect of the evolution of the precipitate phases on the creep rupture strength of P92 steel was discussed.展开更多
The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix...The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.展开更多
The effect of titanium on the as-cast structure and the growth form of titanium precipitates, and the effect of cooling rate on the size and distribution of titanium precipitates were studied. It is shown that Ti-rich...The effect of titanium on the as-cast structure and the growth form of titanium precipitates, and the effect of cooling rate on the size and distribution of titanium precipitates were studied. It is shown that Ti-rich precipitates acting as heterogeneous nucleation sites play an important role in refining the grain size and increasing the equiaxed grain ratio. Cooling rate has a great effect on the size and distribution of precipitates. The number of precipitates increases and the size decreases with the increase of cooling rate. Ti-rich particles acting as het- erogeneous nucleation sites at the onset of solidification are observed in the experiment. This result suggests that TiN nucleated on Ti2O3 is an effective inoculant for δ-ferrite during solidification in low carbon steel.展开更多
The microstructure of dislocation in two kinds of ahiminum-lithium alloys 2090 and 2090 + Ce was observed by means of TEM technology. The contributions of δ' and T1 precipitates to strength were separately calculat...The microstructure of dislocation in two kinds of ahiminum-lithium alloys 2090 and 2090 + Ce was observed by means of TEM technology. The contributions of δ' and T1 precipitates to strength were separately calculated by using the results of quantitative metallography and analysis of micro-deformation behavior; the co-strengthening effect of δ' and T1 precipitates was studied. The results show that the adding relationship of co-strengthening of δ' and T1 is in accordance with q = 1.4 form at the near peak-aged condition, i.e., △τ^1.4δ = △τ^1.4δ+ △τ^1.4T1, but the adding relationship is approximately a linear relation (q = 1) at the under-aged condition and becomes the parabola form when over-aged (q = 2). The adding relationship of co-strengthening contribution of δ' and T1 is obviously dependent on aging time.展开更多
The effects of heat treatment on the precipitates and strengthening mechanism in AISI H13 steel were investigated. The results showed that the presence of nanoscale precipitates favorably affected grain refinement and...The effects of heat treatment on the precipitates and strengthening mechanism in AISI H13 steel were investigated. The results showed that the presence of nanoscale precipitates favorably affected grain refinement and improved the yield strength. The volume fraction of precipitates increased from 1.05% to 2.85% during tempering, whereas the average precipitate size first decreased then increased during tempering. Contributions to the yield strength arising from the various mechanisms were calculated quantificationally, and the results demonstrated that grain refinement and dislocation density most strongly influenced the yield strength. In addition, under the interaction of average size and volume fraction, precipitates' contribution to the yield strength ranged from 247.9 to 378.5 MPa. Finally, a root-mean-square summation law of σ = σg + σs +(σd^2 + σp^2)^1/2, where σg, σs, σd, and σp represent the contributions of fine-grain strengthening, solid-solution strengthening, dislocation strengthening, and precipitation strengthening, respectively, was confirmed as the most applicable for AISI H13 steel, which indicates a strong link between precipitates and dislocations in AISI H13 steel.展开更多
Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinemen...Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinement.With decreasing the rolling temperature, dislocations can be pinned by carbonitrides and the strength is increased. Based on the two sublattice model, with metal atom sublattice and interstitial atom sublattice,a thermodynamic model for carbonitride was established to calculate the equilibrium between matrix and carbonitride. In the steel produced by CSP, the calculation results showed that the starting temperature of precipitation of Ti and Nb are 1340℃ and 1040℃, respectively. In the range of 890-950℃, Nb rapidly precipitated. And the maximum of the atomic fraction of Nb in carbonitride was about 0.68. The morphologies and energy spectrum of the precipitates showed that (NbTi) (CN) precipitated near the dislocations. The experiment results show that Nb rapidly precipitated when the temperature was lower than 970℃, and the atomic fraction of Nb in carbonitride was about 60%-80%. The calculation results are in agreement with the experiment data. Therefore the thermodynamic model can be a useful assistant tool in the research on the precipitates in the low carbon steels produced by CSP.展开更多
基金supported by the National Research Foundation of Korea(NRFgrant nos.2019R1A2C1085272 and RS-2023-00244478)funded by the Ministry of Science,ICT,and Future Planning(MSIP,South Korea)。
文摘This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86.
基金Project support provided by the National Natural Science Foundation of China(Grant No.12075200)the National Key Research and Development Program of China(Grant No.2022YFB3706004)。
文摘A series of high-entropy alloys(HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method.In order to study the irradiation evolution of helium bubbles in the FeCoNiCrbased HE As with γ' precipitates,these samples are irradiated by 100-keV helium ions with a fluence of 5 × 10^(20) ions/m^(2) at 293 K and 673 K,respectively.And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles.Transmission electron microscope(TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles.Experimental results reveal that nanosized,spherical,dispersed,coherent,and ordered L1_(2)-type Ni_(3)Ti γ' precipitations are introduced into FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K.Under the ageing treatment conditions adopted in this work,γ' nanoparticles are precipitated in FeCoNiCr(Ni_(3)Ti)_(0.1) HE As,with average diameters of 15.80 nm,37.09 nm,and 62.50 nm,respectively.The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm,1.65 nm,and 1.58 nm,respectively.The improvement in the irradiation resistance of FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs is evidenced by the diminution in bubbles size.Furthermore,the FeCoNiCr(Ni_(3)Ti)_(0.1) HEAs containing γ' precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles,which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries.Subsequently,annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy(E_(a)) for helium bubbles,resulting in larger helium bubble size.This study provides guidance for improving the irradiation resistance of L1_(2)-strengthened high-entropy alloy.
基金Funded by Natural Science Foundation of Guangdong Province,China (No.2017A030313330)Science and Technology Program of Guangzhou (No.201804020040)。
文摘To improve the surface quality for aluminum alloy 6061(Al6061) in ultra-precision machining, we investigated the factors affecting the surface finish in single point diamond turning(SPDT)by studying influence of the precipitates generation of Al6061 on surface integrity and surface roughness.Based on the Johnson-Mehl-Avrami solid phase transformation kinetics equation, theoretical and experimental studies were conducted to build the relationship between the aging condition and the type, size and number of the precipitates for Al6061. Diamond cutting experiments were conducted to machine Al6061 samples under different aging conditions. The experimental results show that, the protruding on the chip surface is mainly Mg_(2)Si and the scratches on the machined surface mostly come from the iron-containing phase(α-, β-AlFeSi).Moreover, the generated Mg_(2)Si and α-, β-AlFeSi affect the surface integrity and the diamond turned surface roughness. Especially, the achieved surface roughness in SPDT is consistent with the variation of the number of AlFeSi and Mg_(2)Si with the medium size(more than 1 μm and less than 2 μm) in Al6061.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.
基金Projects(51371081,11427806,51471067,51171063) supported by the National Natural Science Foundation of ChinaProject(2009CB623704) supported by the National Basic Research Program of China
文摘By employing atomic-resolution imaging and first principles energy calculations, the growth behavior of S-phase precipitates in a high strength A1-Cu-Mg alloy was investigated. It is demonstrated that the nucleation and growth of the S-phase precipitate are rather anisotropic and temperature-dependent companying with low dimensional phase transformation. There are actually two types of Guinier-Preston (GP) zones that determine the formation mechanism of S-phase at high aging temperatures higher than 180 ℃. One is the precursors of the S-phase itself, the other is the structural units or the precursors of the well-known Guinier-Preston-Bagaryatsky (GPB) zones. At high temperatures the later GPB zone units may form around S-phase precipitate and cease its growth in the width direction, leading to the formation of rod-like S-phase crystals; whereas at low temperatures the S-phase precipitates develop without the interference with GPB zones, resulting in S-phase orecioitates with lath-like momhology.
基金Projects(51274083,51074062)supported by the National Natural Science Foundation of China
文摘Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.
基金Project (CDJZR12130048) supported by the Fundamental Research Funds for the Central Universities of ChinaProject supported by the Research Council of Norway
文摘Al-x%Sc-0.11%Zr alloys (x=0, 0.02, 0.05, 0.08, 0.11, 0.15) were produced by a chill cast procedure. The effect of Sc content on the precipitation of Al3(Sc,Zr) during heat treatment at 475 °C for 12 h was studied. Nucleation, precipitation and distribution of Al3(Sc,Zr) precipitates were found to be strongly related to the Sc content. With increasing the Sc content, the average radius of the precipitates decreases, while the number density of the precipitates increases, as investigated by transmission electron microscopy (TEM). The distribution of the precipitates becomes more and more homogeneous when the Sc content is increased. The recrystallization resistance of samples that was 90% cold rolled and isothermal annealed for half an hour in the temperature range of 200-600 °C was investigated. The results show that the recrystallization temperature varies from 250 °C for the alloy without Sc to about 600 °C for the alloy containing 0.15% Sc because of the high density of Al3(Sc,Zr) precipitates.
基金Project (2008629045) supported by the China Scholarship Council (Constructing High-Level University Project)
文摘Floating zone method with optical radiation heating was applied to growing a class of R2PdSi3(R=Pr,Tb and Gd) single crystals due to its containerless melting and high stability of the floating zone.One serious problem during the single crystal growth,precipitates of secondary phases,was discussed from the following four parts:precipitates from the raw materials and preparation process,precipitates formed during the growing process,precipitates in the melts and precipitates in the grown crystals.Annealing treatment and composition shift can effectively reduce the precipitates which are not formed during the crystallization but precipitated on post-solidification cooling from the as-grown crystal matrix because of the retrograde solubility of Si.
基金This research is supported by the state foundation for key projects: Fundamental Research on New Generation of Steels (No.G1998061500).
文摘This paper investigated the mechanism of precipitation and its influence upon prop-erties of ultra-thin hot strips of low carbon steel produced by CSP techniques using experiment and thermodynamics theory. The experimental results show that there are lots of fine and dispersive precipitates in microstructures. By analysis, most of aluminum nitrides are in grains, while coexisted precipitates of MnS are along grain boundaries. Coexisted precipitates compose cation-vacancy type oxides such as Al2O3 in the core, while MnS is at the fringe of surface. The precipitation behavior of AIN and MnS in the hot strip is studied by thermodynamic calculation. At last, implica-tions between strengthening effect and techniques are analyzed using obtained solubility products.
基金financial support by the National Natural Science Foundation of China (No. 51271035)the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20110006110007)
文摘The microstructures and properties of hot-rolled low-carbon ferritic steel have been investigated by optical microscopy, field-emission scanning electron microscopy, transmission electron microscopy, and tensile tests after isothermal transformation from 600°C to 700°C for 60 min. It is found that the strength of the steel decreases with the increment of isothermal temperature, whereas the hole expansion ratio and the fraction of high-angle grain boundaries increase. A large amount of nanometer-sized carbides were homogeneously distributed throughout the material, and fine(Ti, Mo)C precipitates have a significant precipitation strengthening effect on the ferrite phase because of their high density. The nanometer-sized carbides have a lattice parameter of 0.411-0.431 nm. After isothermal transformation at 650°C for 60 min, the ferrite phase can be strengthened above 300 MPa by precipitation strengthening according to the Ashby-Orowan mechanism.
文摘In order to investigate the fracture toughness, crack tip opening displacement (CTOD) experiments were conducted on two X70 pipeline steel plates with different rolling processes. Atter the experiments, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to observe the microstructure and fracture morphology. The effects of precipi- tates on the fracture toughness and the crack initiation mechanism induced by inclusions were analyzed. The CTOD result shows that the steel with a lower finishing cooling temperature has a higher fracture toughness. Inchisiom with different shapes and two kinds of precipi- tates with different sizes were observed. It can be concluded that precipitates with different sizes have different effects and mechanisms on the fracture toughness. Distinguished fi'om the earlier researches, inclusions enriched in silicon can be also served as the crack initiation.
基金financially supported by the National Natural Science Foundation of China(No.51101050)Natural Science Foundation of Jiangsu Province of China(No.BK2011257)
文摘Niobium, as the most effective second-phase forming element, was added in the Fe-Crl3-C-N hard- facing alloy to get carbonitride precipitates. Morphology and composition of carbonitride in the hardfacing alloy were studied by optical microscopy, scanning electron microscopy, and electron probe microanalyzer. The ther- modynamics and the effect on the matrix of the formation of carbonitride were also discussed. It was found that niobium carbonitrides are complex Nb(C, N) precipitate distributed on grain boundary and matrix of the hardfacing alloy. Under as-welded condition, primary carbonitride particles were readily precipitated from the hardfacing alloy with large size and morphology as they were formed already during solidification. Under heat treatment condi- tion, a large number of secondary carbonitrides can pre- cipitate out with very fine size and make a great secondary hardening effect on the matrix. As a result, addition of niobium in the hardfacing alloy can prevent the formation of chromium-rich phase on grain boundaries and inter- granular chromium depletion.
基金supported by the Aviation Industry Corporation of China (No. 201110026-01)
文摘The morphological evolution of the γ' phase in nickel-based superalloy жc6y during various solution heat treatments was investigated. The significant changes of the γ' precipitates were observed in the solution-treated samples. The coarsening and dissolution of γ' phase simulta-neously occurred at intermediate temperatures. In some areas, the primary precipitates became blunt and the adjacent ones were intercon-nected with each other via a diffuse neck, indicating a coarsening process of the primary γ' population. The coarsening was dominated by the precipitate agglomeration mechanism (PAM) rather than by the well-known Ostwald ripening mechanism. In other areas, the partial dissolu-tion of the γ' precipitates began to occur, spreading gradually from dendrite cores to interdendritic regions. In addition, a flower-like γ' struc-ture was developed during the subsolvus solution treatments. The observable long filaments composed of erraticly shaped precipitates were caused by the heterogeneous nucleation of the cooling precipitates during water quenching.
文摘The precipitates in P92 steel after long-term service in an ultra-supercritical unit were investigated by field-emission scanning electron microscopy and transmission electron microscopy and were found to mainly consist of M23 C6 carbides,Laves phase,and MX carbonitrides.No Z-phase was observed.M23 C6 carbides and Laves phase were found not only on prior austenite grain boundaries,martensite lath boundaries,and subgrain boundaries but also in lath interiors,where two types of MX carbonitrides—Nb-rich and V-rich particles—were also observed but the "winged" complexes were hardly found.Each kind of precipitate within the martensite laths exhibited multifarious morphologies,suggesting that a morphological change of precipitates occurred during long-term service.The M23 C6 carbides and Laves phase coarsened substantially,and the latter grew faster than the former.However,MX carbonitrides exhibited a relatively low coarsening rate.The effect of the evolution of the precipitate phases on the creep rupture strength of P92 steel was discussed.
基金supported by the National Natural Science Foundation of China under grant No. 10477006the Key Project of Chinese Ministry of Education undergrant No. 106055
文摘The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.
文摘The effect of titanium on the as-cast structure and the growth form of titanium precipitates, and the effect of cooling rate on the size and distribution of titanium precipitates were studied. It is shown that Ti-rich precipitates acting as heterogeneous nucleation sites play an important role in refining the grain size and increasing the equiaxed grain ratio. Cooling rate has a great effect on the size and distribution of precipitates. The number of precipitates increases and the size decreases with the increase of cooling rate. Ti-rich particles acting as het- erogeneous nucleation sites at the onset of solidification are observed in the experiment. This result suggests that TiN nucleated on Ti2O3 is an effective inoculant for δ-ferrite during solidification in low carbon steel.
文摘The microstructure of dislocation in two kinds of ahiminum-lithium alloys 2090 and 2090 + Ce was observed by means of TEM technology. The contributions of δ' and T1 precipitates to strength were separately calculated by using the results of quantitative metallography and analysis of micro-deformation behavior; the co-strengthening effect of δ' and T1 precipitates was studied. The results show that the adding relationship of co-strengthening of δ' and T1 is in accordance with q = 1.4 form at the near peak-aged condition, i.e., △τ^1.4δ = △τ^1.4δ+ △τ^1.4T1, but the adding relationship is approximately a linear relation (q = 1) at the under-aged condition and becomes the parabola form when over-aged (q = 2). The adding relationship of co-strengthening contribution of δ' and T1 is obviously dependent on aging time.
基金financially supported by the National Natural Science Foundation of China(No.51274031)
文摘The effects of heat treatment on the precipitates and strengthening mechanism in AISI H13 steel were investigated. The results showed that the presence of nanoscale precipitates favorably affected grain refinement and improved the yield strength. The volume fraction of precipitates increased from 1.05% to 2.85% during tempering, whereas the average precipitate size first decreased then increased during tempering. Contributions to the yield strength arising from the various mechanisms were calculated quantificationally, and the results demonstrated that grain refinement and dislocation density most strongly influenced the yield strength. In addition, under the interaction of average size and volume fraction, precipitates' contribution to the yield strength ranged from 247.9 to 378.5 MPa. Finally, a root-mean-square summation law of σ = σg + σs +(σd^2 + σp^2)^1/2, where σg, σs, σd, and σp represent the contributions of fine-grain strengthening, solid-solution strengthening, dislocation strengthening, and precipitation strengthening, respectively, was confirmed as the most applicable for AISI H13 steel, which indicates a strong link between precipitates and dislocations in AISI H13 steel.
基金This work was supported by the National Natural Science Foundation of China under grant Nos. 50334010 and 50271009.
文摘Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinement.With decreasing the rolling temperature, dislocations can be pinned by carbonitrides and the strength is increased. Based on the two sublattice model, with metal atom sublattice and interstitial atom sublattice,a thermodynamic model for carbonitride was established to calculate the equilibrium between matrix and carbonitride. In the steel produced by CSP, the calculation results showed that the starting temperature of precipitation of Ti and Nb are 1340℃ and 1040℃, respectively. In the range of 890-950℃, Nb rapidly precipitated. And the maximum of the atomic fraction of Nb in carbonitride was about 0.68. The morphologies and energy spectrum of the precipitates showed that (NbTi) (CN) precipitated near the dislocations. The experiment results show that Nb rapidly precipitated when the temperature was lower than 970℃, and the atomic fraction of Nb in carbonitride was about 60%-80%. The calculation results are in agreement with the experiment data. Therefore the thermodynamic model can be a useful assistant tool in the research on the precipitates in the low carbon steels produced by CSP.