期刊文献+
共找到97,640篇文章
< 1 2 250 >
每页显示 20 50 100
Compound 3k治疗骨关节炎:调控氧化应激通路改善软骨细胞糖酵解的作用机制 被引量:1
1
作者 郭素蓉 曹士盛 +2 位作者 穆星彤 杨青 张娟 《中国组织工程研究》 CAS 北大核心 2025年第2期363-370,共8页
背景:骨关节炎现已被认为是一种代谢性疾病,既往研究表明糖酵解在骨关节炎的发生发展中起重要作用。Compound 3k作为一种新型糖酵解小分子抑制剂,具有抗炎及抗肿瘤等功效,因此可靶向糖酵解,有望为骨关节炎治疗提供新的思路。目的:基于... 背景:骨关节炎现已被认为是一种代谢性疾病,既往研究表明糖酵解在骨关节炎的发生发展中起重要作用。Compound 3k作为一种新型糖酵解小分子抑制剂,具有抗炎及抗肿瘤等功效,因此可靶向糖酵解,有望为骨关节炎治疗提供新的思路。目的:基于缺氧诱导因子1α/活性氧的氧化应激通路探究Compound 3k在糖酵解过度活跃所导致的骨关节炎中的作用机制。方法:取对数生长期的ATDC5成软骨细胞,用10 ng/mL白细胞介素1β作用24 h诱导骨关节炎体外细胞模型,以CCK-8法检测不同浓度(0.25,0.5,1,2.5,5,10,15μmol/L)Compound 3k的细胞毒性,选出合适浓度进行后续实验。将软骨细胞随机分为对照组、模型组、治疗组,模型组以10 ng/mL的白细胞介素1β诱导,治疗组以Compound 3k预刺激2 h后与白细胞介素1β共培养,用CCK-8法检测各组细胞增殖情况;用ELISA试剂盒检测各组细胞炎症水平;用试剂盒检测各组细胞活性氧、细胞外乳酸脱氢酶及葡萄糖含量;qRT-PCR及Western blot检测相关炎症因子白细胞介素6、肿瘤坏死因子α及糖酵解相关基因葡萄糖转运蛋白1、甘油醛3-磷酸脱氢酶、单羧酸转运蛋白1和缺氧诱导因子1α的表达水平。结果与结论:①与对照组相比,模型组细胞增殖活性下降、糖酵解水平活跃,表现为细胞外乳酸脱氢酶含量增加(P<0.001),葡萄糖含量减少(P<0.001),相关炎症因子白细胞介素6(P<0.0001)及肿瘤坏死因子α(P<0.001),糖酵解相关基因葡萄糖转运蛋白1(P<0.001)、甘油醛3-磷酸脱氢酶(P<0.001)、单羧酸转运蛋白1(P<0.001)及缺氧诱导因子1α(P<0.001)的表达水平均上调,并伴随氧化应激,活性氧过量产生。②与模型组相比,Compound 3k的治疗有效提高细胞增殖活性,抑制过度活跃的糖酵解水平的同时,抑制了骨关节炎软骨细胞炎症(P<0.001)及糖酵解相关基因的表达(P<0.001),且抑制氧化应激,缺氧诱导因子1α的表达水平下调(P<0.0001),活性氧水平下降。③上述结果证实,Compound 3k抑制了白细胞介素1β诱导的软骨细胞炎症,其机制可能与糖酵解及缺氧诱导因子1α/活性氧介导的氧化应激有关。 展开更多
关键词 骨关节炎 糖酵解 compound 3k 氧化应激 HIF-1α/ROS ATDC5细胞 葡萄糖代谢 白细胞介素1Β 小分子药物
下载PDF
New Exact Traveling Wave Solutions for Compound KdV-Type Equation with Nonlinear Terms of Any Order 被引量:1
2
作者 DU Xing-Hua LIU Cheng-Shi 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5X期787-792,共6页
The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. ... The compound KdV-type equation with nonlinear terms of any order is reduced to the integral form. Using the complete discrimination system for polynomial, its all possible exact traveling wave solutions are obtained. Among those, a lot of solutions are new. 展开更多
关键词 compound Kdv-type equation complete discrimination system for polynomial traveling wavesolution evolution equation
下载PDF
Comparative evaluation of commercial Douchi by different molds:biogenic amines,non-volatile and volatile compounds 被引量:2
3
作者 Aijun Li Gang Yang +4 位作者 Zhirong Wang Shenglan Liao Muying Du Jun Song Jianquan Kan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期434-443,共10页
To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fer... To provide new insights into the development and utilization of Douchi artificial starters,three common strains(Aspergillus oryzae,Mucor racemosus,and Rhizopus oligosporus)were used to study their influence on the fermentation of Douchi.The results showed that the biogenic amine contents of the three types of Douchi were all within the safe range and far lower than those of traditional fermented Douchi.Aspergillus-type Douchi produced more free amino acids than the other two types of Douchi,and its umami taste was more prominent in sensory evaluation(P<0.01),while Mucor-type and Rhizopus-type Douchi produced more esters and pyrazines,making the aroma,sauce,and Douchi flavor more abundant.According to the Pearson and PLS analyses results,sweetness was significantly negatively correlated with phenylalanine,cysteine,and acetic acid(P<0.05),bitterness was significantly negatively correlated with malic acid(P<0.05),the sour taste was significantly positively correlated with citric acid and most free amino acids(P<0.05),while astringency was significantly negatively correlated with glucose(P<0.001).Thirteen volatile compounds such as furfuryl alcohol,phenethyl alcohol,and benzaldehyde caused the flavor difference of three types of Douchi.This study provides theoretical basis for the selection of starting strains for commercial Douchi production. 展开更多
关键词 DOUCHI Starting strains Non-volatile compounds Volatile compounds Sensory evaluation
下载PDF
Effect of different drying methods on the amino acids,α-dicarbonyls and volatile compounds of rape bee pollen 被引量:1
4
作者 Yanxiang Bi Jiabao Ni +6 位作者 Xiaofeng Xue Zidan Zhou Wenli Tian Valérie Orsat Sha Yan Wenjun Peng Xiaoming Fang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期517-527,共11页
The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed ... The significant demand for high quality food has motivated us to adopt appropriate processing methods to improve the food nutritional quality and flavors.In this study,the effects of five drying methods,namely,pulsed vacuum drying(PVD),freeze drying(FD),infrared drying(IRD),hot-air drying(HAD)and sun drying(SD)on free amino acids(FAAs),α-dicarbonyl compounds(α-DCs)and volatile compounds(VOCs)in rape bee pollen(RBP)were determined.The results showed that FD significantly released the essential amino acids(EAAs)compared with fresh samples while SD caused the highest loss.Glucosone was the dominantα-DCs in RBP and the highest loss was observed after PVD.Aldehydes were the dominant volatiles of RBP and SD samples contained more new volatile substances(especially aldehydes)than the other four drying methods.Comprehensively,FD and PVD would be potential methods to effectively reduce the quality deterioration of RBP in the drying process. 展开更多
关键词 DRYING Bee pollen Free amino acids α-Dicarbonyl compounds Volatile compounds
下载PDF
Complexation with pre-formed“empty”V-type starch for encapsulation of aroma compounds
5
作者 Jingyi Zhou Lingyan Kong 《Food Science and Human Wellness》 SCIE CSCD 2023年第2期488-494,共7页
Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabiliza... Aroma compounds are low-molecular-weight organic volatile molecules and are broadly utilized in the food industry.However,due to their high volatility and evaporative losses during processing and storage,the stabilization of these volatile ingredients using encapsulation is a commonly investigated practice.Complexation of aroma compounds using starch inclusion complex could be a potential approach due to the hydrophobicity of the left-handed single helical structure.In the present study,we used starch of three different V-type structures,namely V,V,and V,to encapsulate six different aroma compounds,including1-decanol(DN),cis-3-hexen-1-ol(HN),4-allylanisole(AN),γ-decalactone(DA),trans-cinnamaldehyde(CA),and citral(CT).The formed inclusion complexes samples were characterized using complementary techniques,including X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The results showed that upon complexation with aroma compounds,all V-subtypes retained their original crystalline structures.However,different trends of crystallinity were observed for each type of the prepared inclusion complexes.Additionally,among three V-type starches,V-type starch formed inclusion complexes with aroma compounds most efficiently and promoted the formation of FormⅡcomplex.This study suggested that the structure of aroma compounds and the type of V starch could both affect the complexation properties. 展开更多
关键词 STARCH “Empty”v-type AROMA Inclusion complex ENCAPSULATION
下载PDF
Numerical modeling of fracture propagation of supercritical CO_(2)compound fracturing 被引量:1
6
作者 Hao Chen Yong Kang +2 位作者 Wanchun Jin Changhai Li Can Cai 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2607-2628,共22页
The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical C... The exploitation of shale gas is promising due to depletion of the conventional energy and intensification of the greenhouse effect.In this paper,we proposed a heat-fluid-solid coupling damage model of supercritical CO_(2)(SC-CO_(2))compound fracturing which is expected to be an efficient and environmentally friendly way to develop shale gas.The coupling model is solved by the finite element method,and the results are in good agreement with the analytical solutions and fracturing experiments.Based on this model,the fracture propagation characteristics at the two stages of compound fracturing are studied and the influence of pressurization rate,in situ stress,bedding angle,and other factors are considered.The results show that at the SC-CO_(2)fracturing stage,a lower pressurization rate is conducive to formation of the branches around main fractures,while a higher pressurization rate inhibits formation of the branches around main fractures and promotes formation of the main fractures.Both bedding and in situ stress play a dominant role in the fracture propagation.When the in situ stress ratio(δ_(x)/δ_(y))is 1,the presence of bedding can reduce the initiation pressure and failure pressure.Nevertheless,it will cause the fracture to propagate along the bedding direction,reducing the fracture complexity.In rocks without bedding,hydraulic fracturing has the lengthening and widening effects for SC-CO_(2)induced fracture.In shale,fractures induced at the hydraulic fracturing stage are more likely to be dominated by in situ stresses and have a shorter reorientation radius.Therefore,fracture branches propagating along the maximum principal stress direction may be generated around the main fractures induced by SC-CO_(2)at the hydraulic fracturing stage.When the branches converge with the main fractures,fracture zones are easily formed,and thus the fracture complexity and damage area can be significantly increased.The results are instructive for the design and application of SC-CO_(2)compound fracturing. 展开更多
关键词 compound fracturing Fracture propagation Finite element method Damage evolution
下载PDF
Significant contributions of the petroleum industry to volatile organic compounds and ozone pollution:Insights from year-long observations in the Yellow River Delta 被引量:1
7
作者 Jinghao Tang Hengqing Shen +7 位作者 Hong Li Yuanyuan Ji Xuelian Zhong Min Zhao Yuhong Liu Mingzhi Guo Fanyi Shang Likun Xue 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第6期39-44,共6页
The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-serva... The petroleum industry is a significant source of anthropogenic volatile organic compounds(VOCs),but up to now,its exact impact on urban VOCs and ozone(O_(3))remains unclear.This study conducted year-long VOC ob-servations in Dongying,China,a petroleum industrial region.The VOCs from the petroleum industry(oil and gas volatilization and petrochemical production)were identified by employing the positive matrix factorization model,and their contribution to O_(3) formation was quantitatively evaluated using an observation-based chemical box model.The observed annual average concentration of VOCs was 68.6±63.5 ppbv,with a maximum daily av-erage of 335.3 ppbv.The petroleum industry accounted for 66.5%of total VOCs,contributing 54.9%from oil and gas evaporation and 11.6%from petrochemical production.Model results indicated that VOCs from the petroleum industry contributed to 31%of net O_(3) production,with 21.3%and 34.2%contributions to HO_(2)+NO and RO_(2)+NO pathways,respectively.The larger impact on the RO_(2) pathway is primarily due to the fact that OH+VOCs ac-count for 86.9%of the primary source of RO_(2).This study highlights the critical role of controlling VOCs from the petroleum industry in urban O_(3) pollution,especially those from previously overlooked low-reactivity alkanes. 展开更多
关键词 Petroleum industry Volatile organic compounds Ozone pollution Positive matrix factorization Observation-based model
下载PDF
Role of methoxy and C_(α)-based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds 被引量:1
8
作者 Yang Zhou Qiang Zeng +3 位作者 Hongyan He Kejia Wu Fuqiao Liu Xuehui Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期114-125,共12页
In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl gro... In order to better understand the specific substituent effects on the electrochemical oxidation process of β-O-4 bond, a series of methoxyphenyl type β-O-4 dimer model compounds with different localized methoxyl groups, including 2-(2-methoxyphenoxy)-1-phenylethanone, 2-(2-methoxyphenoxy)-1-phenylethanol, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2-methoxyphenoxy)-1-(4-methoxyphenyl)ethanol, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanone, 2-(2,6-dimethoxyphenoxy)-1-(4-methoxyphenyl)ethanol have been selected and their electrochemical properties have been studied experimentally by cyclic voltammetry, and FT-IR spectroelectrochemistry. Combining with electrolysis products distribution analysis and density functional theory calculations, oxidation mechanisms of all six model dimers have been explored. In particular, a total effect from substituents of both para-methoxy(on the aryl ring closing to Cα) and Cα-OH on the oxidation mechanisms has been clearly observed, showing a significant selectivity on the Cα-Cβbond cleavage induced by electrochemical oxidations. 展开更多
关键词 Lignin model compounds β-O-4 dimers Electrochemical oxidation Oxidation mechanisms Substituent effect
下载PDF
Modern approaches for detection of volatile organic compounds in metabolic studies focusing on pathogenic bacteria:Current state of the art 被引量:2
9
作者 Karolina Zuchowska Wojciech Filipiak 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期483-505,共23页
Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific micr... Pathogenic microorganisms produce numerous metabolites,including volatile organic compounds(VOCs).Monitoring these metabolites in biological matrices(e.g.,urine,blood,or breath)can reveal the presence of specific microorganisms,enabling the early diagnosis of infections and the timely implementation of tar-geted therapy.However,complex matrices only contain trace levels of VOCs,and their constituent com-ponents can hinder determination of these compounds.Therefore,modern analytical techniques enabling the non-invasive identification and precise quantification of microbial VOCs are needed.In this paper,we discuss bacterial VOC analysis under in vitro conditions,in animal models and disease diagnosis in humans,including techniques for offline and online analysis in clinical settings.We also consider the advantages and limitations of novel microextraction techniques used to prepare biological samples for VOC analysis,in addition to reviewing current clinical studies on bacterial volatilomes that address inter-species in-teractions,the kinetics of VOC metabolism,and species-and drug-resistance specificity. 展开更多
关键词 Volatile organic compounds Pathogenic bacteria metabolites Metabolomics Microextraction techniques Gas chromatography-mass spectrometry In vivo breath analysis In vitro model
下载PDF
Preparation of lactic acid bacteria compound starter cultures based on pasting properties and its improvement of glutinous rice flour and dough 被引量:1
10
作者 Dengyu Wang Linlin Liu +4 位作者 Bing Wang Wenjian Xie Yanguo Shi Na Zhang Hongchen Fan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2090-2101,共12页
The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,an... The effects of 5 lactic acid bacteria(LAB)fermentation on the pasting properties of glutinous rice flour were compared,and suitable fermentation strains were selected based on the changes of viscosity,setback value,and breakdown value to prepare LAB compound starter cultures.The results revealed that Latilactobacillus sakei HSD004 and Lacticaseibacillus rhamnosus HSD005 had apparent advantages in increasing the viscosity and reducing the setback and breakdown values of glutinous rice flour.In particular,the compound starter created using the two abovementioned LAB in the ratio of 3:1 had better performance than that using a single LAB in improving the pasting properties and increasing the water and oil absorption capacity of glutinous rice flour.Moreover,the gelatinization enthalpy of the fermented samples increased significantly.For frozen glutinous rice dough stored for 28 days,the viscoelasticity of frozen dough prepared by compound starter was better than that of control dough,and the freezable water content was lower than that of control dough.These results indicate that compound LAB fermentation is a promising technology in the glutinous rice-based food processing industry,which has significance for its application. 展开更多
关键词 Glutinous rice flour Glutinous rice dough Lactic acid bacteria compound starter cultures Pasting properties VISCOELASTICITY
下载PDF
Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection
11
作者 Heng Jiang Chi Chung Tsoi +4 位作者 Weixing Yu Mengchao Ma Mingjie Li Zuankai Wang Xuming Zhang 《Light(Science & Applications)》 SCIE EI CSCD 2024年第11期2649-2667,共19页
Natural selection has driven arthropods to evolve fantastic natural compound eyes(NCEs)with a unique anatomical structure,providing a promising blueprint for artificial compound eyes(ACEs)to achieve static and dynamic... Natural selection has driven arthropods to evolve fantastic natural compound eyes(NCEs)with a unique anatomical structure,providing a promising blueprint for artificial compound eyes(ACEs)to achieve static and dynamic perceptions in complex environments.Specifically,each NCE utilises an array of ommatidia,the imaging units,distributed on a curved surface to enable abundant merits.This has inspired the development of many ACEs using various microlens arrays,but the reported ACEs have limited performances in static imaging and motion detection.Particularly,it is challenging to mimic the apposition modality to effectively transmit light rays collected by many microlenses on a curved surface to a flat imaging sensor chip while preserving their spatial relationships without interference.In this study,we integrate 271 lensed polymer optical fibres into a dome-like structure to faithfully mimic the structure of NCE.Our ACE has several parameters comparable to the NCEs:271 ommatidia versus 272 for bark beetles,and 180° field of view(FOV)versus 150–180° FOV for most arthropods.In addition,our ACE outperforms the typical NCEs by~100 times in dynamic response:31.3 kHz versus 205 Hz for Glossina morsitans.Compared with other reported ACEs,our ACE enables real-time,180° panoramic direct imaging and depth estimation within its nearly infinite depth of field.Moreover,our ACE can respond to an angular motion up to 5.6×10^(6)deg/s with the ability to identify translation and rotation,making it suitable for applications to capture high-speed objects,such as surveillance,unmanned aerial/ground vehicles,and virtual reality. 展开更多
关键词 field. compound enable
原文传递
A novel fluorescent labeling compound for GluN2A containing N-methyl-D-aspartate receptors identified by autodisplay-based screening
12
作者 Alexander Dombovski Ruben Steigerwald +10 位作者 Nadine Ritter Paul Disse Gunnar Goerges Jana Osthues Isabel Aymanns Carina Dilkaute Julian Schreiber Martina Düfer Guiscard Seebohm Bernhard Wünsch Joachim Jose 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第7期1091-1094,共4页
Autodisplay of N-methyl-D-aspartate(NMDA)receptor[1]ligand binding domains(LBDs)was done by inserting the coding sequence for each LBD[2]into a plasmid for maximized autotransporter-mediated expression(pMATE)between t... Autodisplay of N-methyl-D-aspartate(NMDA)receptor[1]ligand binding domains(LBDs)was done by inserting the coding sequence for each LBD[2]into a plasmid for maximized autotransporter-mediated expression(pMATE)between the coding sequences of signal peptide and translocator domain[3](Figs.1A and S1).Surface display and functionality of LBDs was confirmed by protease accessibility and radioligand binding(Figs.S2 and S3).This is discussed in more detail in the Sections S1.1S1.5 in the Supplementary data.Cells with surface displayed LBDs were applied for a flow cytometry-based binding assay to evaluate fluorescent TCN-201 derivatives[4](Figs.1B,S4,and S5).More detailed information about the structural prerequisites of TCN-201 derivatives for interacting with the modulatory binding site and synthesis of fluorescent derivatives is given in the Sections S1.6 and S1.7 in the Supplementary data. 展开更多
关键词 compound SYNTHESIS SEQUENCES
下载PDF
Assessment of electrostatic discharge sensitivity of nitrogen-rich heterocyclic energetic compounds and their salts as high energy-density dangerous compounds:A study of structural variables
13
作者 Mohammad Hossein Keshavarz Sedigheh Heydari Bani +1 位作者 Reza Bakhtiari Seyyed Hesamodin Hosseini 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期15-22,共8页
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous... Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement. 展开更多
关键词 Electrostatic discharge sensitivity Heterocyclic energetic compounds containing azole compound Interpretable structural parameter Safety
下载PDF
Organic Compounds Possessing the Plastic Crystalline Phase: Calculation of Their Fusion Enthalpies
14
作者 Mikhail Yu. Gorbachev Natalia N. Gorinchoy 《International Journal of Organic Chemistry》 2024年第3期93-106,共14页
For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quanti... For the first time, for different organic and inorganic compounds possessing the plastic crystalline phase, a new semiempirical equation describing dependence of their fusion enthalpies on such physico-chemical quantities as normal melting temperature, surface tension, molar volume and critical molar volume is received on the base of the principle of corresponding states and the energy equipartition theorem. Moreover, the proposed equation allows one to take into account the particularities of one-particle molecular rotation in the plastic crystalline phase. 展开更多
关键词 Fusion Enthalpies Calculation Organic compounds Inorganic compounds Plastic Crystalline Phases
下载PDF
Pt-based intermetallic compound catalysts for the oxygen reduction reaction:From problems to recent developments
15
作者 Heyuan Tian Xian Wang +4 位作者 Jiawei Ge Hao Wan Wei Ma Guanqun Xie Junjie Ge 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期302-324,共23页
Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cath... Proton exchange membrane fuel cells(PEMFCs)are promising next-generation energy conversion devices with advantages including high energy conversion efficiency,low noise,and environmental friendliness.On the PEMFC cathode,the oxygen reduction reaction(ORR)relies heavily on Pt-based catalysts,where PtM_(x)(M stands for transition metal)intermetallic compounds(IMCs)are considered the best choice to enhance the catalytic activity.However,problems such as inadequate catalytic activity,high cost,and insufficient durability,etc.still hamper its commercialization.The optimizations of the catalyst structure,the improvements in the preparation process,and the understanding of the reaction mechanism are of great value.The developments of cathodic oxygen reduction catalysts for PEMFCs will also focus on improving the catalytic activity of intermetallic compound nanoparticles,the utilization rate,and the durability of Pt.Controlling the particle size and particle/carrier interaction remain key issues for future research.The catalyst reaction mechanism,the surface changes of the nanoparticles of Pt(111)face before and after the catalytic reaction,and the targeted regulation of the adsorption strength between the IMCs and oxygen-containing intermediates adjusted by transition metals need to be investigated more specifically and directly.At the application level,the expression of catalyst properties in the catalyst membrane electrode and reactor are the keys to the performance of PEMFCs.Therefore,researches on PEMFCs are still systematic works.This paper summarized the recent process toward the optimization of catalyst preparation,the exploration of new catalysts,and the new understanding of the mechanism.Given the reference to the development of PEMFCs,future research can start from the existing problems,solve the shortcomings of the catalyst,and promote the practical application of PEMFCs. 展开更多
关键词 Oxygen reduction reaction PLATINUM PEMFCS Intermetallic compound
下载PDF
Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway
16
作者 Jiabin Wu Ke Li +3 位作者 Muge Zhou Haoyang Gao Wenhong Wang Weihua Xiao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第8期1125-1139,共15页
Diabetic nephropathy(DN),a severe complication of diabetes,is widely recognized as a primary contributor to end-stage renal disease.Recent studies indicate that the inflammation triggered by Tolllike receptor 4(TLR4)i... Diabetic nephropathy(DN),a severe complication of diabetes,is widely recognized as a primary contributor to end-stage renal disease.Recent studies indicate that the inflammation triggered by Tolllike receptor 4(TLR4)is of paramount importance in the onset and progression of DN.TLR4 can bind to various ligands,including exogenous ligands such as proteins and polysaccharides from bacteria or viruses,as well as endogenous ligands such as biglycan,fibrinogen,and hyaluronan.In DN,the expression or release of TLR4-related ligands is significantly elevated,resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways.This process is closely associated with the progression of DN.Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases.Various types of natural compounds,including alkaloids,flavonoids,polyphenols,terpenoids,glycosides,and polysaccharides,have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway.In this review,we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway.We specifically highlight the potential of compounds such as curcumin,paclitaxel,berberine,and ursolic acid to inhibit the TLR4 signaling pathway,which provides an important direction of research for the treatment of DN. 展开更多
关键词 Diabetic nephropathy Toll-like receptor 4 Natural compounds INFLAMMATION
下载PDF
Nutritional values,bioactive compounds and health benefits of purslane(Portulaca oleracea L.):a comprehensive review
17
作者 Yanxi Li Longgao Xiao +3 位作者 Huan Yan Mingyi Wu Xiaojiang Hao Haiyang Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2480-2501,共22页
Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medici... Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medicinal plants around the world,it has recently been re-evaluated as a potential“new crop”due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid(α-linolenic acid),as well as a variety of nutrients and phytochemicals.Accordingly,emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory,anti-hyperglycemic,antioxidant,neuroprotective,and immunomodulatory.These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine.This review systematically summarizes the up-to-date research carried out on purslane,including the nutritional compositions,bioactive compounds,and health benefits it exerts as well as limitations,challenges,and future directions of research.Finally,we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment. 展开更多
关键词 Purslane Nutritional compositions Bioactive compounds POLYSACCHARIDES Functional foods
下载PDF
Antidiabetic Properties of Bidens pilosa and Its Polyacetylenic Compounds for Management of Diabetes: Systematic Review
18
作者 Kenneth Waititu Caroline Mugo +1 位作者 Daisy Nyawira Peter Mwethera 《Journal of Biosciences and Medicines》 2024年第2期164-179,共16页
Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compou... Bidens pilosa is a member of the Asteraceae family that is widely distributed across the tropics. It has been utilized by different communities both as food and medicinal herb. This plant and its polyacetylenic compounds hold potential as a natural antidiabetic intervention that can be used to combat this global public health problem. Bioactive compounds found in this plant constitute promising interventions for combating obesity which is a major risk factor for the development of type 2 diabetes. These phytocompounds can work independently or synergistically to modulate appetite, lipase activity, adipogenesis and adipocyte apoptosis. However, the efficacy, mode of action and scope of management of diabetes by these compounds remains elusive. The current review aims to summarize data on efficacy in the management of diabetes, an antidiabetic candidate polyacetylenic compound and possible biological activities as an antidiabetic agent from the available literature. Much emphasis has been directed to cytopiloyne as a representative of polyacetylenic compounds extracted from Bidens pilosa and its activity on diabetic animal models. The majority of the studies conducted on animal models described antidiabetic mechanisms that range from hypoglycemic to secretagogue activity of cytopiloyne in a dose-dependent manner. A clinical trial pilot indicated improved glycemic control of Bidens pilosa formulation among diabetic patients in the study. Bidens pilosa and its compounds are highly potent antidiabetic agent(s) that should be graduated to an intervention for management of diabetes through pre-clinical and clinical trials to elucidate its efficacy and safety. 展开更多
关键词 ANTIDIABETIC Cytopiloyne Bidens pilosa Polyacetylenic compounds
下载PDF
Bioactive compounds in Hericium erinaceus and their biological properties:a review
19
作者 Yue Qiu Genglan Lin +4 位作者 Weiming Liu Fuming Zhang Robert J.Linhardt Xingli Wang Anqiang Zhang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1825-1844,共20页
Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also ... Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed. 展开更多
关键词 Hericium erinaceus Bioactive compounds Biological activities ANTIOXIDATION NEUROPROTECTION IMMUNOREGULATION
下载PDF
Multiple roles of arsenic compounds in phase separation and membraneless organelles formation determine their therapeutic efficacy in tumors
20
作者 Meiyu Qu Qiangqiang He +5 位作者 Hangyang Bao Xing Ji Tingyu Shen Muhammad Qasim Barkat Ximei Wu Ling-Hui Zeng 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第8期1110-1124,共15页
Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further... Arsenic compounds are widely used for the therapeutic intervention of multiple diseases.Ancient pharmacologists discovered the medicinal utility of these highly toxic substances,and modern pharmacologists have further recognized the specific active ingredients in human diseases.In particular,Arsenic trioxide(ATO),as a main component,has therapeutic effects on various tumors(including leukemia,hepatocellular carcinoma,lung cancer,etc.).However,its toxicity limits its efficacy,and controlling the toxicity has been an important issue.Interestingly,recent evidence has pointed out the pivotal roles of arsenic compounds in phase separation and membraneless organelles formation,which may determine their toxicity and therapeutic efficacy.Here,we summarize the arsenic compoundsregulating phase separation and membraneless organelles formation.We further hypothesize their potential involvement in the therapy and toxicity of arsenic compounds,highlighting potential mechanisms underlying the clinical application of arsenic compounds. 展开更多
关键词 Arsenic compounds Phase separation Membraneless organelles PML Stress granules
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部