采用Gleeble-3500热模拟试验机研究了20Mn Si V热轧钢筋在高应变速率下,三区(铁素体单向区、铁素体加奥氏体双相区及奥氏体单相区)压缩时的组织变化及变形特征。结果表明:铁素体单向区变形时,组织分布不均且晶粒粗大,应避免在该相区进...采用Gleeble-3500热模拟试验机研究了20Mn Si V热轧钢筋在高应变速率下,三区(铁素体单向区、铁素体加奥氏体双相区及奥氏体单相区)压缩时的组织变化及变形特征。结果表明:铁素体单向区变形时,组织分布不均且晶粒粗大,应避免在该相区进行变形;铁素体加奥氏体双相区变形时奥氏体相转化成细小均匀的铁素体和珠光体,以760℃时的组织最佳,细晶强化和相变强化作用共同保证了材料在双相区变形比在奥氏体单相区变形具有更高的强韧性;结合变形抗力特征发现,随着变形温度的升高,变形抗力总体呈降低趋势,但存在3个低应力温度点,且在760℃最为显著;变形过程中铁素体与奥氏体合理的体积分数及相分布是760℃应力降低的主要原因。展开更多
文摘采用Gleeble-3500热模拟试验机研究了20Mn Si V热轧钢筋在高应变速率下,三区(铁素体单向区、铁素体加奥氏体双相区及奥氏体单相区)压缩时的组织变化及变形特征。结果表明:铁素体单向区变形时,组织分布不均且晶粒粗大,应避免在该相区进行变形;铁素体加奥氏体双相区变形时奥氏体相转化成细小均匀的铁素体和珠光体,以760℃时的组织最佳,细晶强化和相变强化作用共同保证了材料在双相区变形比在奥氏体单相区变形具有更高的强韧性;结合变形抗力特征发现,随着变形温度的升高,变形抗力总体呈降低趋势,但存在3个低应力温度点,且在760℃最为显著;变形过程中铁素体与奥氏体合理的体积分数及相分布是760℃应力降低的主要原因。