EV和可再生能源的发展促使V2H系统成为研究的热点。EV在V2H系统中扮演着可控负载和移动储能的双重角色,具有削峰填谷、后备电源的作用,可以有效提高电网的经济性和可靠性。然而,EV行为的不确定性对微电网经济和稳定运行产生了重大影响...EV和可再生能源的发展促使V2H系统成为研究的热点。EV在V2H系统中扮演着可控负载和移动储能的双重角色,具有削峰填谷、后备电源的作用,可以有效提高电网的经济性和可靠性。然而,EV行为的不确定性对微电网经济和稳定运行产生了重大影响。针对上述问题,提出了基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)的方法对EV的随机性进行建模,并在此基础上建立了基于模型预测控制技术的全局在线优化算法。该算法可以在执行微电网能量优化管理的过程中充分考虑EV的储能特性,进而降低系统运行成本。不同情况下的算例分析验证了所提能量优化管理策略的有效性。展开更多
文摘EV和可再生能源的发展促使V2H系统成为研究的热点。EV在V2H系统中扮演着可控负载和移动储能的双重角色,具有削峰填谷、后备电源的作用,可以有效提高电网的经济性和可靠性。然而,EV行为的不确定性对微电网经济和稳定运行产生了重大影响。针对上述问题,提出了基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)的方法对EV的随机性进行建模,并在此基础上建立了基于模型预测控制技术的全局在线优化算法。该算法可以在执行微电网能量优化管理的过程中充分考虑EV的储能特性,进而降低系统运行成本。不同情况下的算例分析验证了所提能量优化管理策略的有效性。