期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
3D porous V2O5 architectures for high-rate lithium storage 被引量:2
1
作者 Qifei Li Dong Chen +3 位作者 Huiteng Tana Xianghua Zhang Xianhong Rui Yan Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期15-21,I0002,共8页
The discovery of novel electrode materials promises to unleash a number of technological advances in lithium-ion batteries.V2O5 is recognized as a high-performance cathode that capitalizes on the rich redox chemistry ... The discovery of novel electrode materials promises to unleash a number of technological advances in lithium-ion batteries.V2O5 is recognized as a high-performance cathode that capitalizes on the rich redox chemistry of vanadium to store lithium.To unlock the full potential of V2O5,nanotechnology solution and rational electrode design are used to imbue V2O5 with high energy and power density by addressing some of their intrinsic disadvantages in macroscopic crystal form.Here,we demonstrate a facile and environmental-friendly method to prepare nanorods-constructed 3D porous V2O5 architectures(3 D-V2O5)in large-scale.The 3D porous architecture is found to be responsible for the enhanced charge transfer kinetics and Li-ion diffusion rate of the 3D-V2O5 electrode.As the result,the 3D-V2O5 surpasses the conventional bulk V2O5 by showing enhanced discharge capacity and rate capability(delivering 154 and 127 m Ah g^-1 at 15 and 20 C,respectively). 展开更多
关键词 Lithium storage v2o5 cathode Porous structure Mass production High rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部