V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for N...V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.展开更多
A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. ...A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.展开更多
An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the...An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.展开更多
基金supported by the National Natural Science Foundation of China (51372137)the National High Technology Research and Development Program of China (863 Program,2015AA034603)~~
文摘V2O5/WO3‐TiO2 and V2O5/WO3‐TiO2‐SiO2 catalysts were prepared by a wetness impregnation method, and both the catalysts were hydrothermally aged at 750℃ in 10 vol%H2O/air for 24 h. The catalysts were evaluated for NOx conversion using NH3 as the reductant. Hydrothermal ageing decreased the NOx conversion of V2O5/WO3‐TiO2 catalyst severely over the entire measured tem‐perature range. Interestingly, the NH3‐SCR activity of the silica‐modified catalyst at 220–480℃ is enhanced after ageing. The catalysts were characterized by X‐ray diffraction, nitrogen adsorption, X‐ray fluorescence, Raman spectroscopy, H2 temperature‐programmed reduction, and NH3 temper‐ature‐programmed desorption. The addition of silica inhibited the phase transition from anatase to rutile titania, growth of TiO2 crystallite size and shrinkage of catalyst surface area. Consequently, the vanadia species remained highly dispersed and the hydrothermal stability of the V2O5/WO3‐TiO2 catalyst was significantly improved.
基金supported by the National Natural Science Foundation of China(21325731,21221004)the National High Technology Research and Development Program of China(863 Program)the State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
文摘A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.
基金supported by the Natural Science Foundation of Liaoning Province(No.20072154)
文摘An efficient environment-friendly synthesis of N-phenylpiperidine was developed from aniline and 1,5-pentanediol over γ-Al2O3 catalyst under atmospheric pressure. The conversion of 1,5-pentanediol reached 97% and the selectivity for N-phenylpiperidine attained 94%. The structure of the catalyst was characterized by NH3-TPD and BET. The influences of calcination temperature of the catalyst and reaction temperature on activity and selectivity of the catalyst were investigated.
基金Supported by Fundamental Research Funds for Central Universities(HEUCF201403002)Advanced Technique Project Funds of the Manufacture and Information Ministry