针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷...针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。展开更多
数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题...数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题,提出了一个新的特征解耦学习框架。首先,基于变分自动编码器(variation auto encoder,简称VAE)构建一个特征解耦条件变分自动编码器(conditional variation auto encoder,简称CVAE)网络,实现工况和健康状态的解耦;其次,对解耦后的健康状态相关特征进行降维处理,构建异常指标(anomaly indicator,简称ANI);然后,将ANI与统计异常阈值相结合,实现时变工况下轴承的异常检测;最后,通过基于时变转速退化的轴承加速疲劳退化实验,验证了该方法的有效性以及所构建的健康指标在消除时变工况干扰方面的优越性。展开更多
文摘针对滚动轴承故障诊断中样本分布不均衡引起的模型泛化能力差、诊断精度低的问题,从两个方面展开研究:(1)故障样本增广,提出结合变分自编码器(VAE)和生成对抗网络(GAN)的VAE-GAN样本增广模型;(2)改进分类算法,提出基于焦点损失(FL)和卷积神经网络(CNN)的FLCNN(focal loss and convolutional neural network)样本分类模型。在此基础上,将VAE-GAN和FLCNN融合,构建VAE-GAN+FLCNN轴承故障诊断模型。首先,将样本量少的故障类输入VAE-GAN模型,通过交替训练编码网络、生成网络和判别网络,学习出真实故障样本的数据分布,从而实现故障样本的增广;然后用增广后的数据样本训练FLCNN分类模型,完成轴承故障识别。试验对比结果表明,所提方法能够有效提升样本不均衡条件下的轴承故障诊断效果,拥有更高的Recall值和F1-score值。
文摘数据驱动的异常检测技术被广泛应用于复杂机械设备状态监测中,工况(operating conditions,简称OCs)变化会导致监测数据的分布漂移,使传统数据驱动的异常检测方法的准确性受到极大干扰。为了解决时变工况下工况和健康状态之间的耦合问题,提出了一个新的特征解耦学习框架。首先,基于变分自动编码器(variation auto encoder,简称VAE)构建一个特征解耦条件变分自动编码器(conditional variation auto encoder,简称CVAE)网络,实现工况和健康状态的解耦;其次,对解耦后的健康状态相关特征进行降维处理,构建异常指标(anomaly indicator,简称ANI);然后,将ANI与统计异常阈值相结合,实现时变工况下轴承的异常检测;最后,通过基于时变转速退化的轴承加速疲劳退化实验,验证了该方法的有效性以及所构建的健康指标在消除时变工况干扰方面的优越性。