Using the Hamilton-Jacobi equation of a scalar particle in the curve space-time and a correct- dimension new tortoise coordinate transformation, the quantum nonthermal radiation of the Vaidya-Bonner-de Sitter black ho...Using the Hamilton-Jacobi equation of a scalar particle in the curve space-time and a correct- dimension new tortoise coordinate transformation, the quantum nonthermal radiation of the Vaidya-Bonner-de Sitter black hole is investigated. The energy condition for the occurrence of the Starobinsky-Unruh process is obtained. The event horizon surface gravity and the Hawking temperature on the event horizon are also given.展开更多
Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking tempe...Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.展开更多
文摘Using the Hamilton-Jacobi equation of a scalar particle in the curve space-time and a correct- dimension new tortoise coordinate transformation, the quantum nonthermal radiation of the Vaidya-Bonner-de Sitter black hole is investigated. The energy condition for the occurrence of the Starobinsky-Unruh process is obtained. The event horizon surface gravity and the Hawking temperature on the event horizon are also given.
基金Project supported by the National Natural Science Foundation of China (Grant No 10773008)
文摘Using the general tortoise coordinate transformation, we research the fermion tunneling of the Vaidya-Bonner de Sitter black hole via a semi-classical method and finally obtain the right surface gravity, Hawking temperature and tunneling rate near the event horizon and cosmical horizon.