To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless ...To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.展开更多
An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried ou...An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.展开更多
Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final elec- tromagnetic stirring (F-EMS). The results show that cracks initiates and propagate...Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final elec- tromagnetic stirring (F-EMS). The results show that cracks initiates and propagates along the grain boundaries where the elements of carbon and sulfur are enriched. The final stirrer should be appropriately placed at a location that is 7.5 m away from the meniscus, and the appropri- ate thickness of the liquid core in the stirring zone is 50 ram. As a stirring current of 250 A is imposed, it can promote colurnnar-equiaxed transition, decrease the secondary dendrite arm spacing, and reduce the segregation of both carbon and sulfur. F-EMS can effectively de- crease the amount of cracks in 1Cr13 stainless steel.展开更多
By means of the numerical simulation method,the mathematical model of inclusions movement in the mold is established under the condition of austenitic and fen-itic stainless steel slab production. According to the sim...By means of the numerical simulation method,the mathematical model of inclusions movement in the mold is established under the condition of austenitic and fen-itic stainless steel slab production. According to the simulation results, the main zones for inclusion particles accumulation were found and many factors that affected floating-up probability of inclusion particles were identified. These factors include the inclusion particle size, the casting speed and the slab width, etc. It is believed that the inclusion particle size is the key one among these factors.展开更多
Hot tearing is one of the major defects in continuous casting of steels, which severely limits the productivity of steelmaking processes. To further understand the defect, the problem of hot tearing in duplex stainles...Hot tearing is one of the major defects in continuous casting of steels, which severely limits the productivity of steelmaking processes. To further understand the defect, the problem of hot tearing in duplex stainless steel produced by a vertical continuous caster was investigated. A three-dimensional heat transfer and elastic-plastic model was developed based on the realistic roller layout in continuous slab casting, using ProCAST software. According to the hot tearing indicator criterion, the influence of operating parameters on the hot tearing susceptibility was evaluated. The results show that the surface temperature distribution is not sensitive to the superheat. The center of wide surface shell at the mold exit is the thinnest, and the thickness is about 10.52 mm at the superheat temperature of 40 -C. The hot tearing mainly concentrates on the slab solidification front and near the narrow face. However, corner cracks are prone to appear near the corner. With the increase in casting speed and the decrease in the cooling intensity in the secondary cooling zone, the solidification end point is rushed, which leads to the position of hot tearing lowering accordingly.展开更多
Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.T...Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.展开更多
To solve slag entrapment and casting slab defects in the process of stainless steel continuous casting,submerged entry nozzle(SEN)for slab casters operating at casting speed of 1 m/min was developed based on 3D numeri...To solve slag entrapment and casting slab defects in the process of stainless steel continuous casting,submerged entry nozzle(SEN)for slab casters operating at casting speed of 1 m/min was developed based on 3D numerical simulation and water modeling experiments by controlling the outlet shape and angle of original SEN with oval and 15°angle outlet under current industrial use.Mathematical simulations of fluid velocity at outlets with different shapes and angles of SENs have been carried out.The results showed that oval outlet with 5°and 15°angle led to asymmetric rotating flow pattern at outlet,as well as square outlet with 15°angle,but symmetric flow pattern formed at square outlet with 5°angle.The effect of these SENs on meniscus stability,flow field and slag entrapment behavior of stainless steel slab casting mold was further studied by water modeling experiments.The results showed that difficult floating fine droplets formed when the angle of outlet was 15°under the dual effect of vortex convection and shear force due to the strong swirling flow from outlet and rotating flow of outlet.However,outlet with 5°angle could lead to the formation of larger slag droplets,while the oval outlet with 5°angle could result in the scour to the mold wall.Thus,the square outlet with 5°angle was a relatively ideal solution for the submerged entry nozzle from the aspects of the stability of the mold and the slag entrapment behavior.After the design of a new SEN according to the experimental result,the solidification structure of continuous casting slab was obviously improved by industrial test.展开更多
The position of the solidification completed temperature of twin roll stainless strip casting process is very important to the quality of the casting strip. In order to control this position, the solidification comple...The position of the solidification completed temperature of twin roll stainless strip casting process is very important to the quality of the casting strip. In order to control this position, the solidification completed temperature should be known at first. The present paper first simulated dendritic microsegregation under conditions of twin roll stainless strip casting, and got the relationship between the temperature and the solid fraction of the mush zone. The temperatures such as ZDT (equal to the solidification completed temperature) and LIT (liquid impenetrable temperature), et al., also can be found from this relationship. Then by using the turbulent model, the flow and thermal fields of the pool of the twin roll stainless strip casting and the speed and temperature fields of different casting speeds were given and also explained. The simulation results are coincident with the experimental results. Combined with the results of these simulations, the appropriated casting speed was found.展开更多
TiN inchusions are the major inclusions in Ti-stabilized stainless steels.The quantity and dis- tribution of the TiN inclusions depend on the casting process closely.TiN inclusions in molten steel can float up and gro...TiN inchusions are the major inclusions in Ti-stabilized stainless steels.The quantity and dis- tribution of the TiN inclusions depend on the casting process closely.TiN inclusions in molten steel can float up and grow up gradually during huoying.The sequence of the formation of in- clusions in the steel is oxides,nitrides and sulphides.展开更多
基金Project(CSTC2007BB4216) supported by the Natural Science Foundation of Chongqing,China
文摘To understand the solidification behavior of austenitic stainless steel in rotary electromagnetic-field, the influence of low-frequency rotary electromagnetic-field on solidification structure of austenitic stainless steel in horizontal continuous casting was investigated based on industrial experiments. The results show that the solidification structure of austenitic stainless steel can be remarkably refined, the central porosity and shrinkage cavity can be remarkably decreased, and the equiaxed grains zone are enlarged by means of application of appropriate low-frequency electromagnetic-field parameters. The industrial trials verify that the stirring intensity of austenitic stainless steel should be higher compared with that of plain carbon steel. Electromagnetic stirring affects the macrostructure even if the average magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT) with the frequency of 3-4 Hz. Due to a higher viscosity, rotating speed of molten stainless steel is 20%-30% lower than that of molten carbon steel in the same magnetic flux density.
文摘An investigation on the influence of low frequency rotary electromagnetic stirring on solidification structure of austenitic stainless steel in horizontal continuous casting was experimentally conducted and carried out on an industrial trial basis. The results show that application of appropriate electromagnetic stirring parameters can obviously improve the macrostructure of austenitic stainless steel, in which both columnar and equiaxed grains can be greatly refined and shrinkage porosity or cavity zone along centerline can be remarkably decreased due to eliminating intracrystalline and enlarging equiaxed grains zone. The industrial trials verify that the electromagnetic stirring intensity of austenitic stainless steel should be higher than that of plain carbon steel. Electromagnetic stirring has somewhat affected the macrostructure of austenitic stainless steel even if the magnetic flux density of the electromagnetic stirring reaches 90 mT (amplitude reaches 141 mT ) in average at frequency f=3-4Hz, which provides a reference for the optimization of design and process parameters when applying the rotary electromagnetic stirrer.
基金financially supported by the National Natural Science Foundation of China (No. 50834009)the Key Project of the Ministry of Education of China (No. 311014)the 111 Project of China (No. B07015)
文摘Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final elec- tromagnetic stirring (F-EMS). The results show that cracks initiates and propagates along the grain boundaries where the elements of carbon and sulfur are enriched. The final stirrer should be appropriately placed at a location that is 7.5 m away from the meniscus, and the appropri- ate thickness of the liquid core in the stirring zone is 50 ram. As a stirring current of 250 A is imposed, it can promote colurnnar-equiaxed transition, decrease the secondary dendrite arm spacing, and reduce the segregation of both carbon and sulfur. F-EMS can effectively de- crease the amount of cracks in 1Cr13 stainless steel.
文摘By means of the numerical simulation method,the mathematical model of inclusions movement in the mold is established under the condition of austenitic and fen-itic stainless steel slab production. According to the simulation results, the main zones for inclusion particles accumulation were found and many factors that affected floating-up probability of inclusion particles were identified. These factors include the inclusion particle size, the casting speed and the slab width, etc. It is believed that the inclusion particle size is the key one among these factors.
基金The authors gratefully express their appreciation to the National Natural Science Foundation of China(No.51474143)for the financial support.
文摘Hot tearing is one of the major defects in continuous casting of steels, which severely limits the productivity of steelmaking processes. To further understand the defect, the problem of hot tearing in duplex stainless steel produced by a vertical continuous caster was investigated. A three-dimensional heat transfer and elastic-plastic model was developed based on the realistic roller layout in continuous slab casting, using ProCAST software. According to the hot tearing indicator criterion, the influence of operating parameters on the hot tearing susceptibility was evaluated. The results show that the surface temperature distribution is not sensitive to the superheat. The center of wide surface shell at the mold exit is the thinnest, and the thickness is about 10.52 mm at the superheat temperature of 40 -C. The hot tearing mainly concentrates on the slab solidification front and near the narrow face. However, corner cracks are prone to appear near the corner. With the increase in casting speed and the decrease in the cooling intensity in the secondary cooling zone, the solidification end point is rushed, which leads to the position of hot tearing lowering accordingly.
基金This work was financially supported by the National Natural Science Foundation of China(No.51574026).
文摘Submerged entry nozzle(SEN)clogging during continuous casting of Ti-stabilized ultra-pure ferritic stainless(Ti-UPFS)steels was systematically investigated via cross-sectional analysis and acid dissolution treatment.The SEN deposit profile was characterized as occurring in three major layers:(1)an eroded refractory layer;(2)an initial adhesive layer comprised an Al_(2)O_(3)-ZrO_(2) composite sub-layer and a dense Al_(2)O_(3)-based deposit sub-layer;and(3)a porous multiphase deposit layer mainly consisting of MgO·Al_(2)O_(3),CaO-Al_(2)O_(3),and CaO-TiOx.The MgO·Al_(2)O_(3)-rich inclusions did not adhere directly to the eroded refractory but were entrapped during the deposit growth.Results of inclusion characterization in the tundish revealed that the MgO·Al2O3-rich particles present in the tundish served as the primary source of clogging deposits.Furthermore,a novel cavity-induced adhesion model by circular approximation was established to explain the effects of complex inclusion characteristics and refractory material type on adhesion force.A high number of small MgO·Al_(2)O_(3) inclusions were expected to accelerate the buildup of clogging deposits.Improving the modification of MgO·Al_(2)O_(3)-rich inclusions in the size range of 2-4μm by Ca treatment was crucial to minimizing the risk of SEN clogging during the continuous casting of Ti-UPFS steels.
文摘To solve slag entrapment and casting slab defects in the process of stainless steel continuous casting,submerged entry nozzle(SEN)for slab casters operating at casting speed of 1 m/min was developed based on 3D numerical simulation and water modeling experiments by controlling the outlet shape and angle of original SEN with oval and 15°angle outlet under current industrial use.Mathematical simulations of fluid velocity at outlets with different shapes and angles of SENs have been carried out.The results showed that oval outlet with 5°and 15°angle led to asymmetric rotating flow pattern at outlet,as well as square outlet with 15°angle,but symmetric flow pattern formed at square outlet with 5°angle.The effect of these SENs on meniscus stability,flow field and slag entrapment behavior of stainless steel slab casting mold was further studied by water modeling experiments.The results showed that difficult floating fine droplets formed when the angle of outlet was 15°under the dual effect of vortex convection and shear force due to the strong swirling flow from outlet and rotating flow of outlet.However,outlet with 5°angle could lead to the formation of larger slag droplets,while the oval outlet with 5°angle could result in the scour to the mold wall.Thus,the square outlet with 5°angle was a relatively ideal solution for the submerged entry nozzle from the aspects of the stability of the mold and the slag entrapment behavior.After the design of a new SEN according to the experimental result,the solidification structure of continuous casting slab was obviously improved by industrial test.
基金This project was sponsored by the National Natural Science Foundation of China (Grant No.59995440)
文摘The position of the solidification completed temperature of twin roll stainless strip casting process is very important to the quality of the casting strip. In order to control this position, the solidification completed temperature should be known at first. The present paper first simulated dendritic microsegregation under conditions of twin roll stainless strip casting, and got the relationship between the temperature and the solid fraction of the mush zone. The temperatures such as ZDT (equal to the solidification completed temperature) and LIT (liquid impenetrable temperature), et al., also can be found from this relationship. Then by using the turbulent model, the flow and thermal fields of the pool of the twin roll stainless strip casting and the speed and temperature fields of different casting speeds were given and also explained. The simulation results are coincident with the experimental results. Combined with the results of these simulations, the appropriated casting speed was found.
文摘TiN inchusions are the major inclusions in Ti-stabilized stainless steels.The quantity and dis- tribution of the TiN inclusions depend on the casting process closely.TiN inclusions in molten steel can float up and grow up gradually during huoying.The sequence of the formation of in- clusions in the steel is oxides,nitrides and sulphides.