Aim: To investigate the differences in microvessel densities (MVD) and the expressions of vascular endothelial growth factor (VEGF), VEGF-C and VEGF receptor-3 (VEGFR-3) between prostate cancer (PCa) tissues ...Aim: To investigate the differences in microvessel densities (MVD) and the expressions of vascular endothelial growth factor (VEGF), VEGF-C and VEGF receptor-3 (VEGFR-3) between prostate cancer (PCa) tissues and adjacent benign tissues, and to explore the correlations among MVD, Jewett-Whitmore staging, Gleason scores and expressions of VEGF, VEGF-C and VEGFR-3 in the progression of PCa. Methods: An immunohistochemical approach was adopted to detect the expressions of CD34, VEGF, VEGF-C and VEGFR-3 in both cancer areas and peripheral benign areas of 71 primary prostatic adenocarcinoma specimens. A statistic analysis was then performed according to the experimental and clinic data. Results: Significantly upregulated expressions of VEGF, VEGF-C and VEGFR-3 were all found in malignant epithelium/cancer cells compared with adjacent benign epithelium (P 〈 0.01). Patients in stage D had a significantly higher score than patients in stage A, B or C when comparing the expression of VEGF-C or VEGFR-3 in the tumor area (P 〈 0.01). In addition, significant correlations were observed between Jewett-Whitmore staging and VEGF-C (rs = 0.738, P 〈 0.01), clinical staging and VEGFR-3 (rs = 0.410, P 〈 0.01), VEGF-C and Gleason scores (rs = 0.401, P 〈 0.01), VEGFR-3 and Gleason scores (rs = 0.581, P 〈 0.001) and MVD and VEGF (rs = 0.492, P 〈 0.001). Conclusion: Increased expressions of VEGF and VEGF-C were closely associ- ated with progression of PCa. The main contribution of increased VEGF expression for PCa progression was to upregulate MVD, which maintained the growth advantage of tumor tissue. However, the chief role of increased expressions of VEGF-C and VEGFR-3 was to enhance lymphangiogenesis and provide a main pathway for cancer cells to disseminate. (Asian J Androl 2006 Mar; 8: 169-175)展开更多
目的:血管生成是肿瘤生长和转移的关键介质,CDC25B在包括三阴性乳腺癌(Triple-Negative Breast Cancer,TNBC)等恶性肿瘤作为肿瘤癌基因,但其对血管生成的生物学作用知之甚少,本研究旨在探讨CDC25B在TNBC血管生成中的确切功能和作用机制...目的:血管生成是肿瘤生长和转移的关键介质,CDC25B在包括三阴性乳腺癌(Triple-Negative Breast Cancer,TNBC)等恶性肿瘤作为肿瘤癌基因,但其对血管生成的生物学作用知之甚少,本研究旨在探讨CDC25B在TNBC血管生成中的确切功能和作用机制。方法:生信数据库分析CDC25B及其上游调控分子miR-141-3p在TNBC肿瘤组织中的表达,采用qRT-PCR分析CDC25B和miR-141-3p在TNBC细胞系中的表达。利用CCK-8和血管形成实验分析HUVEC细胞的增殖和血管形成能力,并通过Western blot检测VEGFA、VEGFR-2和VEGFR-3蛋白的表达。双荧光素酶报告实验被用于探索CDC25B和miR-141-3p之间的特异性相互作用。结果:本研究发现CDC25B在TNBC中表达上调,其高表达可以激活VEGF信号通路,沉默CDC25B后显著抑制了HUVEC细胞的增殖和血管生成,并降低了VEGFA、VEGFR-2和VEGFR-3蛋白的表达。此外,miR-141-3p在TNBC中表达下调,可以靶向抑制CDC25B的表达。过表达CDC25B可以逆转miR-141-3p过表达对HUVEC细胞增殖和血管生成的抑制作用。结论:miR-141-3p靶向CDC25B抑制VEGF通路抑制TNBC血管生成,为miR-141-3p/CDC25B/VEGF通路可能作为TNBC抗血管生成治疗的新选择提供理论依据。展开更多
文摘Aim: To investigate the differences in microvessel densities (MVD) and the expressions of vascular endothelial growth factor (VEGF), VEGF-C and VEGF receptor-3 (VEGFR-3) between prostate cancer (PCa) tissues and adjacent benign tissues, and to explore the correlations among MVD, Jewett-Whitmore staging, Gleason scores and expressions of VEGF, VEGF-C and VEGFR-3 in the progression of PCa. Methods: An immunohistochemical approach was adopted to detect the expressions of CD34, VEGF, VEGF-C and VEGFR-3 in both cancer areas and peripheral benign areas of 71 primary prostatic adenocarcinoma specimens. A statistic analysis was then performed according to the experimental and clinic data. Results: Significantly upregulated expressions of VEGF, VEGF-C and VEGFR-3 were all found in malignant epithelium/cancer cells compared with adjacent benign epithelium (P 〈 0.01). Patients in stage D had a significantly higher score than patients in stage A, B or C when comparing the expression of VEGF-C or VEGFR-3 in the tumor area (P 〈 0.01). In addition, significant correlations were observed between Jewett-Whitmore staging and VEGF-C (rs = 0.738, P 〈 0.01), clinical staging and VEGFR-3 (rs = 0.410, P 〈 0.01), VEGF-C and Gleason scores (rs = 0.401, P 〈 0.01), VEGFR-3 and Gleason scores (rs = 0.581, P 〈 0.001) and MVD and VEGF (rs = 0.492, P 〈 0.001). Conclusion: Increased expressions of VEGF and VEGF-C were closely associ- ated with progression of PCa. The main contribution of increased VEGF expression for PCa progression was to upregulate MVD, which maintained the growth advantage of tumor tissue. However, the chief role of increased expressions of VEGF-C and VEGFR-3 was to enhance lymphangiogenesis and provide a main pathway for cancer cells to disseminate. (Asian J Androl 2006 Mar; 8: 169-175)
文摘目的:血管生成是肿瘤生长和转移的关键介质,CDC25B在包括三阴性乳腺癌(Triple-Negative Breast Cancer,TNBC)等恶性肿瘤作为肿瘤癌基因,但其对血管生成的生物学作用知之甚少,本研究旨在探讨CDC25B在TNBC血管生成中的确切功能和作用机制。方法:生信数据库分析CDC25B及其上游调控分子miR-141-3p在TNBC肿瘤组织中的表达,采用qRT-PCR分析CDC25B和miR-141-3p在TNBC细胞系中的表达。利用CCK-8和血管形成实验分析HUVEC细胞的增殖和血管形成能力,并通过Western blot检测VEGFA、VEGFR-2和VEGFR-3蛋白的表达。双荧光素酶报告实验被用于探索CDC25B和miR-141-3p之间的特异性相互作用。结果:本研究发现CDC25B在TNBC中表达上调,其高表达可以激活VEGF信号通路,沉默CDC25B后显著抑制了HUVEC细胞的增殖和血管生成,并降低了VEGFA、VEGFR-2和VEGFR-3蛋白的表达。此外,miR-141-3p在TNBC中表达下调,可以靶向抑制CDC25B的表达。过表达CDC25B可以逆转miR-141-3p过表达对HUVEC细胞增殖和血管生成的抑制作用。结论:miR-141-3p靶向CDC25B抑制VEGF通路抑制TNBC血管生成,为miR-141-3p/CDC25B/VEGF通路可能作为TNBC抗血管生成治疗的新选择提供理论依据。