Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ...Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.展开更多
Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factor...Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.展开更多
考虑剪力墙剪切变形影响、连梁固结连接条件,利用变分原理,建立框架-剪力墙结构分析模型的微分方程。推导微分方程的初参数解,进而建立适应变刚度结构分析的传递矩阵法,给出均布荷载和倒三角形分布荷载作用的传递矩阵荷载附加项的计算公...考虑剪力墙剪切变形影响、连梁固结连接条件,利用变分原理,建立框架-剪力墙结构分析模型的微分方程。推导微分方程的初参数解,进而建立适应变刚度结构分析的传递矩阵法,给出均布荷载和倒三角形分布荷载作用的传递矩阵荷载附加项的计算公式,导出顶部集中荷载、顶部集中弯矩、沿高度方向均布荷载和倒三角形分布荷载作用下的挠度、转角、剪力墙弯矩、剪力的计算公式。以2个铰结体系框架-剪力墙为例,对计算公式进行验证。研究结果表明:当连梁等效抗弯刚度为0 k N·m/m时固结体系可退化成铰结体系,当剪力墙抗剪刚度趋于无穷大时,弯剪型剪力墙可退化为不考虑剪切变形的弯曲型剪力墙,因此,本文微分方程可适应于多种模型的计算;采用传递矩阵法分析变刚度框架-剪力墙结构,其计算结果与采用平均刚度法的理论解析解结果较吻合,证明传递矩阵法与平均刚度法都具有可行性,但若提高计算精度,则应采用能考虑变刚度特征的传递矩阵法或有限元法;考虑剪力墙剪切变形影响的本文计算公式所得计算结果与其他公式所得结果有一定差别。展开更多
文摘Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle.
基金Project supported by the National Natural Science Foundation of China(No.50725826)the National Science and Technology Support Program(No.2008BAJ08B06)+1 种基金the National Technology Research and Development Program(No.2009AA04Z420)the Shanghai Postdoctoral fund (No.I0R21416200)
文摘Based on the theories of Timoshenko's beams and Vlasov's thin-walled members, a new spatial thin-walled beam element with an interior node is developed. By independently interpolating bending angles and warp, factors such as transverse shear deformation, torsional shear deformation and their Coupling, coupling of flexure and torsion, and second shear stress are considered. According to the generalized variational theory of Hellinger-Reissner, the element stiffness matrix is derived. Examples show that the developed model is accurate and can be applied in the finite element analysis of thinwalled structures.
文摘考虑剪力墙剪切变形影响、连梁固结连接条件,利用变分原理,建立框架-剪力墙结构分析模型的微分方程。推导微分方程的初参数解,进而建立适应变刚度结构分析的传递矩阵法,给出均布荷载和倒三角形分布荷载作用的传递矩阵荷载附加项的计算公式,导出顶部集中荷载、顶部集中弯矩、沿高度方向均布荷载和倒三角形分布荷载作用下的挠度、转角、剪力墙弯矩、剪力的计算公式。以2个铰结体系框架-剪力墙为例,对计算公式进行验证。研究结果表明:当连梁等效抗弯刚度为0 k N·m/m时固结体系可退化成铰结体系,当剪力墙抗剪刚度趋于无穷大时,弯剪型剪力墙可退化为不考虑剪切变形的弯曲型剪力墙,因此,本文微分方程可适应于多种模型的计算;采用传递矩阵法分析变刚度框架-剪力墙结构,其计算结果与采用平均刚度法的理论解析解结果较吻合,证明传递矩阵法与平均刚度法都具有可行性,但若提高计算精度,则应采用能考虑变刚度特征的传递矩阵法或有限元法;考虑剪力墙剪切变形影响的本文计算公式所得计算结果与其他公式所得结果有一定差别。