期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
Application of NIR Reflectance Spectroscopy on Rapid Determination of Moisture Content of Wood Pellets 被引量:1
1
作者 Jaya Sundaram Sudhagar Mani +1 位作者 Chari V. K. Kandala Ronald A. Holser 《American Journal of Analytical Chemistry》 2015年第12期923-932,共10页
NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63% and 14.16% (wet basis) and the moisture concentration was verified usi... NIR spectroscopy was used to measure the moisture concentration of wood pellets. Pellets were conditioned to various moisture levels between 0.63% and 14.16% (wet basis) and the moisture concentration was verified using a standard oven method. Samples from various moisture levels were separated into two groups, as calibration and validation sets. NIR absorption spectral data from 400 nm to 2500 nm with 0.5 nm intervals were collected using pellets within the calibration and validation sample sets. Spectral wavelength ranges were taken as independent variables and the MC of the pellets as the dependent variable for the analysis. Measurements were obtained on 30 replicates within each moisture level. Partial Least Square (PLS) analysis was performed on both raw and preprocessed spectral data of calibration set to determine the best calibration model based on Standard Error of Calibration (SEC) and coefficient of multiple determinations (R2). The PLS model that yielded the best fit was used to predict the moisture concentration of validation group pellets. Relative Percent Deviation (RPD) and Standard Error of Prediction (SEP) were calculated to validate goodness of fit of the prediction model. Baseline and Multiple Scatter Corrected (MSC) reflectance spectra with 1st derivative model gave the highest RPD value of 4.46 and R2 of 0.95. Also it’s SEP (0.670) and RMSEP (0.782) were less than the other models those had RPD value more than 3.0 with less number of factors. Therefore, this model was selected as the best model for moisture content prediction of wood pellets. 展开更多
关键词 Wood PELLETS nir reflectance spectroscopy MOISTURE Content Partial Least SQUARE RELATIVE PERCENT Deviation
下载PDF
RAPID DETERMINATION OF PROTEIN IN MILLET BY FOURIER TRANSFORM NEAR-INFRARED(FTNIR)DIFFUSE REFLECTANCE SPECTROSCOPY
2
作者 Le Ming SHI Zhi Hong XU Zhong Xiao PAN Zhi Liang LI Laboratory of Computer Chemistry,Institute of Chemical Metallurgy,Chinese Academy of Sciences,Beijing 100080 Yan Lu YAN Mao JIN Central Laboratory,Beijing Agricultural University,Beijing 100094 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第3期247-250,共4页
In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an ... In this paper,the Fourier transform near-infrared(FTNIR)diffuse reflectance spectroscopy is applied for the rapid determination of protein in millet.The partial least-squares(PLS)regression is successfully used as an effective multivariate calibration technique.The calibration set is composed of 20 standard millet samples that the protein contents were determined by the traditional Kjeldahl method.The optimal model dimension is found to be 5 by cross-validation.22 millet samples were determined by the proposed FTNIR-PLS method.The correlation coefficient between the concentration values obtained by the FTNIR-PLS method and the traditional Kjeldahl method is 0.9805.The standard error of prediction(SEP)is 0.28% and the mean recovery is 100.2%.The proposed method has been successfully applied for the routine analysis of protein in about 10,000 grain samples. 展开更多
关键词 PLS nir FTnir)DIFFUSE reflectance spectroscopy RAPID DETERMINATION OF PROTEIN IN MILLET BY FOURIER TRANSFORM NEAR-INFRARED
下载PDF
Construction of universal quantitative models for the determination of cefoperazone sodium/sulbactam sodium for injection from different manufacturers using near-infrared reflectance spectroscopy 被引量:4
3
作者 逄焕欢 冯艳春 +1 位作者 张学博 胡昌勤 《Journal of Chinese Pharmaceutical Sciences》 CAS 2008年第1期22-29,共8页
To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders ... To develop near-infrared (NIR) reflectance spectroscopic methods for the quantitative analysis of cefoperazone sodium/ sulbactam sodium from different manufacturers for injection powder medicaments. Various powders of cefoperazone sodium/ sulbactam sodium were directly analyzed by non-destructive NIR reflectance spectroscopy using the spectrometer EQUINOX55. Two quantitative methods via integrating sphere (IS) and fiberoptic probe (FOP) models were explored from 6 batches of commercial samples and 42 batches of laboratory samples at a content ranging from 30% to 70% for cefoperazone and 60% to 20% for sulbactam. The root mean square errors of cross validation (RMSECV) and the root mean square errors of prediction (RMSEP) of IS were 1.79% and 2.85%, respectively, for cefoperazone sodium, and were 1.86% and 3.08%, respectively, for sulbactam sodium; and those of FOP were 2.93% and 2.92%, respectively, for cefoperazone sodium, and were 2.23% and 3.01%, respectively, for sulbactam sodium. Based on the ICH guidelines and Ref. 12, the quantitative models were then evaluated in terms of specificity, linearity, accuracy, precision, robustness and model transferability. The non-destructive quantitative NIR methods used in this study are applicable for rapid analysis of injectable powdered drugs from different manufacturers. 展开更多
关键词 nir diffuse reflectance spectroscopy Non-destructive determination Cefoperazone sodium/sulbactam sodium Injection powder medicament Validation Counterfeit medicine
下载PDF
Application of Near Infrared Diffuse Reflectance Spectroscopy with Radial Basis Function Neural Network to Determination of Rifampincin Isoniazid and Pyrazinamide Tablets 被引量:3
4
作者 DU Lin-na WU Li-hang +5 位作者 LU Jia-hui GUO Wei-liang MENG Qing-fan JIANG Chao-jun SHEN Si-le TENG Li-rong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2007年第5期518-523,共6页
Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse r... Partial least squares(PLS),back-propagation neural network(BPNN)and radial basis function neural network(RBFNN)were respectively used for estalishing quantative analysis models with near infrared(NIR)diffuse reflectance spectra for determining the contents of rifampincin(RMP),isoniazid(INH)and pyrazinamide(PZA)in rifampicin isoniazid and pyrazinamide tablets.Savitzky-Golay smoothing,first derivative,second derivative,fast Fourier transform(FFT)and standard normal variate(SNV)transformation methods were applied to pretreating raw NIR diffuse reflectance spectra.The raw and pretreated spectra were divided into several regions,depending on the average spectrum and RSD spectrum.Principal component analysis(PCA)method was used for analyzing the raw and pretreated spectra in different regions in order to reduce the dimensions of input data.The optimum spectral regions and the models' parameters were chosen by comparing the root mean square error of cross-validation(RMSECV)values which were obtained by leave-one-out cross-validation method.The RMSECV values of the RBFNN models for determining the contents of RMP,INH and PZA were 0.00288,0.00226 and 0.00341,respectively.Using these models for predicting the contents of INH,RMP and PZA in prediction set,the RMSEP values were 0.00266,0.00227 and 0.00411,respectively.These results are better than those obtained from PLS models and BPNN models.With additional advantages of fast calculation speed and less dependence on the initial conditions,RBFNN is a suitable tool to model complex systems. 展开更多
关键词 Rifampicin isoniazid and pyrazinamide tablets nir diffuse reflectance spectroscopy Partial least square Back-propagation neural network Radial basis function neural network
下载PDF
Determination of Protein and Starch Content in Whole Maize Kernel by Near Infrared Reflectance Spectroscopy 被引量:2
5
作者 WEILiang-ming YANYan-lu DAIJing-rui 《Agricultural Sciences in China》 CAS CSCD 2004年第7期490-495,共6页
Using 128 bulk-kernel samples of inbred lines and hybrids, a study was conducted toinvestigate the feasibility and method of measuring protein and starch contents inintact seeds of maize by near infrared reflectance s... Using 128 bulk-kernel samples of inbred lines and hybrids, a study was conducted toinvestigate the feasibility and method of measuring protein and starch contents inintact seeds of maize by near infrared reflectance spectroscopy (NIRS). The chemometricalgorithms of partial least square (PLS) regression was used. The results indicated thatthe calibration models developed by the spectral data pretreatment of firstderivative+multivariate scattering correction within the spectral region of 10000-4000cm-1, and first derivative + straight line subtraction in 9000-4000cm-1 were thebest for protein and starch, respectively. All these models yielded coefficients ofdetermination of calibration (R2cal) above 0.97, while R2cv and R2val of cross and externalvalidation ranged from 0.92 to 0.95, respectively; however, the root of mean squareerrors of calibration, cross and external validation (RMSEE, RMSECV and RMSEP) werebelow 1(ranged 0.3-0.7),respectively. This study demonstrated that it is feasible touse NIRS as a rapid, accurate, and none-destructive technique to predict protein andstarch contents of whole kernel in the maize quality improvement program. 展开更多
关键词 MAIZE Near infrared reflectance spectroscopy (nirS) Protein and starch CALIBRATION model
下载PDF
Geographic Classification of Chinese Grape Wines by Near-Infrared Reflectance Spectroscopy 被引量:1
6
作者 赵芳 赵育 +1 位作者 毛文华 战吉宬 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期40-45,共6页
Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mod... Near-infrared reflectance spectroscopy (NIRS) was applied to classify grape wines of different geographical origins (Changli, Huailai, and Yantai, China). Near infrared (NIR) spectra were collected in transmission mode in the wavelength range of 800-2500 nm. Wines (n=90) were randomly split into two sets, calibration set (n=54) and validation set (n=36). Discriminant analysis models were developed using BP neural network and discriminant partial least-squares discriminant analysis (PLS-DA). The prediction performance of calibration models in different wavelength range was also investigated. BP neural network models and PLS-DA models correctly classified 100% of the wines in calibration set. When used to predict wines in validation set, BP neural network models correctly classified 100%, 81.8%, and 90.9% of the wines from Changli, Huailai, and Yantai respectively, and PLS-DA models correctly classified 100% of all samples. The results demonstrated that NIRS could be used to discriminate Chinese grape wines as a rapid and reliable method. 展开更多
关键词 near-infrared reflectance spectroscopy (nirS) Chinese grape wines discriminant analysis models BP neural network PLS-DA
下载PDF
基于野外Vis-NIR光谱的土壤有机质预测与制图 被引量:20
7
作者 郭燕 纪文君 +1 位作者 吴宏海 史舟 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第4期1135-1140,共6页
利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱... 利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱。在分析吸收光谱和光谱指数与SOM关系的基础上,采用偏最小二乘回归法进行SOM的建模预测并借助地统计学方法进行SOM空间变异制图研究。结果表明,建模效果好的指标分别为特征波段(R2=0.91,RPD=3.28),归一化光谱指数(R2=0.90,RPD=3.08),特征波段与3个光谱指数组合(R2=0.87,RPD=2.67),全波段(R2=0.95,RPD=4.36)。光谱指标的克里格制图与实测SOM制图表现出相同的空间变异趋势,不同的指标均达到了较好的预测效果。 展开更多
关键词 vis-nir光谱 野外型光谱仪 土壤有机质 预测与制图 偏最小二乘回归法(PLSR) 地统计
下载PDF
Rapid, Non-Destructive, Textile Classification Using SIMCA on Diffuse Near-Infrared Reflectance Spectra 被引量:2
8
作者 Christopher B. Davis Kenneth W. Busch +2 位作者 Dennis H. Rabbe Marianna A. Busch Judith R. Lusk 《Journal of Modern Physics》 2015年第6期711-718,共8页
Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the ... Soft independent modeling of class analogy (SIMCA) was successful in classifying a large library of 758 commercially available, non-blended samples of acetate, cotton, polyester, rayon, silk and wool 89% - 98% of the time at the 95% confidence level (p = 0.05 significance level). In the present study, cotton and silk had a 62% and 24% chance, respectively, of being classified with their own group and also with rayon. SIMCA correctly identified a counterfeit “silk” sample as polyester. When coupled with diffuse NIR reflectance spectroscopy and a large sample library, SIMCA shows considerable promise as a quick, non-destructive, multivariate method for fiber identification. A major advantage is simplicity. No sample pretreatment of any kind was required, and no adjust-ments were made for fiber origin, manufacturing process residues, topical finishes, weave pattern, or dye content. Increasing the sample library should make the models more robust and improve identification rates over those reported in this paper. 展开更多
关键词 DIFFUSE NEAR-INFRARED (nir) reflectance spectroscopy CHEMOMETRICS Soft Independent Modeling of Class ANALOGY (SIMCA) Pattern Recognition TEXTILE Identification Multivariate Analysis
下载PDF
Online quantitative analysis of soluble solids content in navel oranges using visible-nearinfrared spectroscopy and variable selection methods
9
作者 Yande Liu Yanrui Zhou Yuanyuan Pan 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2014年第6期1-8,共8页
Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis o... Variable selection is applied widely for visible-near infrared(Vis-NIR)spectroscopy analysis of internal quality in fruits.Different spectral variable selection methods were compared for online quantitative analysis of soluble solids content(SSC)in navel oranges.Moving window partial least squares(MW-PLS),Monte Carlo uninformative variables elimination(MC-UVE)and wavelet transform(WT)combined with the MC-UVE method were used to select the spectral variables and develop the calibration models of online analysis of SSC in navel oranges.The performances of these methods were compared for modeling the Vis NIR data sets of navel orange samples.Results show that the WT-MC-UVE methods gave better calibration models with the higher correlation cofficient(r)of 0.89 and lower root mean square error of prediction(RMSEP)of 0.54 at 5 fruits per second.It concluded that Vis NIR spectroscopy coupled with WT-MC-UVE may be a fast and efective tool for online quantitative analysis of SSC in navel oranges. 展开更多
关键词 vis nir spectroscopy variables selection soluble solids content wavelet transform moving window paurtial least squares Monte Carlo uninformative variables elimination
下载PDF
NIRS定量分析油菜种子含油量、蛋白质含量数学模型的创建 被引量:77
10
作者 甘莉 孙秀丽 +4 位作者 金良 王高全 徐久伟 魏泽兰 傅廷栋 《中国农业科学》 CAS CSCD 北大核心 2003年第12期1609-1613,共5页
用近红外光谱 (NIRS)分析油菜品质。采用残余法测试了近 2 116份甘蓝型油菜品种资源种子的含油量 ,用近红外仪采集数据 ,选择 12 88份代表性样品 ,建立了数学模型。用该模型测试 96份待测样品 ,其NIRS的测试值与残余法测试的油菜种子含... 用近红外光谱 (NIRS)分析油菜品质。采用残余法测试了近 2 116份甘蓝型油菜品种资源种子的含油量 ,用近红外仪采集数据 ,选择 12 88份代表性样品 ,建立了数学模型。用该模型测试 96份待测样品 ,其NIRS的测试值与残余法测试的油菜种子含油量实测值相关系数为 0 .950 3 ,相对误差小于 3 .5% ,用凯氏定氮法测试了 63 7份油菜籽饼粕的蛋白质含量 ,选择 168份代表性样品 ,建立数学模型。 3 0份样品检测模型 ,NIRS测试值与凯氏定氮法测试的油菜籽饼粕蛋白质含量的实测值相关系数为 0 .9515,相对误差小于 6%。结果表明 ,这 2个数学模型已经可用来准确、快速、无污染。 展开更多
关键词 NlRS定量分析 油菜种子 含油量 蛋白质含量 数学模型 近红外光谱
下载PDF
近红外光谱技术(NIRS)在草地生态学研究中的应用 被引量:17
11
作者 聂志东 韩建国 +1 位作者 张录达 李军会 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2007年第4期691-696,共6页
近红外光谱技术(NIRS)是一种快速、高效、无损的现代检测技术,已经在许多领域广泛应用。文章阐述了NIRS应用于草地生态学研究的意义,介绍了NIRS用于测定牧草营养成分、矿物质、土壤养分含量,分析了牧草混合物的组成、动物对所采食牧草... 近红外光谱技术(NIRS)是一种快速、高效、无损的现代检测技术,已经在许多领域广泛应用。文章阐述了NIRS应用于草地生态学研究的意义,介绍了NIRS用于测定牧草营养成分、矿物质、土壤养分含量,分析了牧草混合物的组成、动物对所采食牧草的反应、牧草病虫害抗性等一些复杂特性,以及进行生化标记、同位素鉴别研究。综合这些研究可以看出,NIRS能够作为一种整体研究工具应用于草地生态学的许多研究领域中,可以检测各种常规化学成分、分析草地生态系统的各种动态指标和系统运行的多项整体特性。希望通过本文的总结分析,推动NIRS在中国草地生态学研究中的应用,加速该领域研究手段的现代化。 展开更多
关键词 近红外光谱技术(nirS) 生态 牧草 应用
下载PDF
近红外光谱技术(NIRS)在检测牧草霉菌毒素中的应用 被引量:11
12
作者 许庆方 韩建国 +1 位作者 玉柱 岳文斌 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第5期1243-1247,共5页
具有快速、高效、无损、在线等优势的近红外光谱技术(nearinfrared reflectance spectroscopy technique,NIRS)已经在农业、食品、化工、医学等领域获得广泛应用。牧草在加工贮藏过程中,受多种真菌的侵染,引起霉菌毒素在牧草中积累。霉... 具有快速、高效、无损、在线等优势的近红外光谱技术(nearinfrared reflectance spectroscopy technique,NIRS)已经在农业、食品、化工、医学等领域获得广泛应用。牧草在加工贮藏过程中,受多种真菌的侵染,引起霉菌毒素在牧草中积累。霉菌毒素会通过动植物产品进入人畜的食物链,引起人畜中毒。牧草中霉菌毒素的常规检测不但需要粉碎、浸提、层析等繁琐的样品前处理过程,还需要酶联免疫吸附法、高效液相色谱法、溥层色谱法等后续检测过程。通过发展高精度、低检出限的光谱仪器,建立相应霉菌毒素检测的软件技术与校正模型,能够在牧草利用中达到快速准确检测霉菌毒素的含量和性质,从而为牧草的合理加工与利用提供依据,促进NIRS技术在健康畜产品生产领域的应用。 展开更多
关键词 近红外光谱技术(nirS) 霉菌毒素 牧草
下载PDF
近红外反射光谱法(NIRS)测定棉仁粉中蛋白质和棉酚含量的研究 被引量:12
13
作者 秦利 沈晓佳 +1 位作者 陈进红 祝水金 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第3期635-639,共5页
选用49份不同蛋白质和棉酚含量的陆地棉种质资源和188份陆地棉重组近交系为材料,以多年份、多地点种植收获的种子材料组成原始样品集,分别对棉仁粉中蛋白质含量和棉酚含量进行化学测定,采用改进的偏最小二乘法(Modified PLS)和(2,4,4,1... 选用49份不同蛋白质和棉酚含量的陆地棉种质资源和188份陆地棉重组近交系为材料,以多年份、多地点种植收获的种子材料组成原始样品集,分别对棉仁粉中蛋白质含量和棉酚含量进行化学测定,采用改进的偏最小二乘法(Modified PLS)和(2,4,4,1)的数学转换方法建立近红外反射光谱(NIRS)定标模型,以寻找棉籽蛋白质含量和棉酚含量的快速测定方法。结果表明,蛋白质含量的定标决定系数(RSQ=0.933)和交叉检验决定系数(1-VR=0.929)较高,定标标准误差(SEC=0.623)和交互校验标准误差(SECV=0.638)较小,预测模型的建模效果较好,可替代化学分析。棉酚含量预测模型的RSQ,1-VR,SEC和SECV分别为0.836,0.811,0.074和0.079,模型预测效果略差于蛋白质模型,但仍可用于棉仁粉中棉酚含量的测定。 展开更多
关键词 近红外反射光谱(nirS) 棉仁粉 棉酚含量 蛋白质含量
下载PDF
近红外光谱技术(NIRS)在反刍动物营养研究中的应用现状 被引量:8
14
作者 郭旭生 尚占环 +1 位作者 方向文 龙瑞军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2009年第3期641-646,共6页
近红外光谱技术(NIRS)分析样品时以其方便、快捷和准确等诸多优点在动物营养研究中得到了广泛的应用;用NIRS技术预测家畜日粮中有机物消化率时所产生的标准偏差(SECV)在1.6%~2.8%之间,而预测干物质的消化率时所产生的SECV在1... 近红外光谱技术(NIRS)分析样品时以其方便、快捷和准确等诸多优点在动物营养研究中得到了广泛的应用;用NIRS技术预测家畜日粮中有机物消化率时所产生的标准偏差(SECV)在1.6%~2.8%之间,而预测干物质的消化率时所产生的SECV在1.6%~3.5%之间。NIRS能够准确地预测饲料中的化学成分和生物学组分以及反刍家畜十二指肠微生物蛋白的流量,但对于预测饲料在瘤胃降解率的动态特性时与实际相差很大。NIRS技术预测舍饲家畜采食量与体内法得到的结果相似,但在预测放牧家畜采食量时其预测误差为14%左右。上述结果表明,NIRS技术在预测反刍家畜消化代谢、日粮营养评价、采食量等方面已取得了很大的进展,并在反刍动物营养研究领域中有着广阔的应用空间。 展开更多
关键词 近红外光谱技术(nirS) 消化率 采食量 食性 反刍动物
下载PDF
基于舌诊NIR反射光谱血清总蛋白含量的无创测量 被引量:8
15
作者 林凌 李哲 +4 位作者 李晓霞 李永成 李刚 张宝菊 宋维 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第8期2110-2116,共7页
采用舌诊近红外反射光谱对人体血清总蛋白(TP)含量进行无创检测。采集58例舌尖反射光谱进行反射率归一化并记录相对应的血清总蛋白生化分析值,将样本分为训练集和预测集,运用主成分分析结合BP神经网络法和偏最小二乘算法分别建立预测模... 采用舌诊近红外反射光谱对人体血清总蛋白(TP)含量进行无创检测。采集58例舌尖反射光谱进行反射率归一化并记录相对应的血清总蛋白生化分析值,将样本分为训练集和预测集,运用主成分分析结合BP神经网络法和偏最小二乘算法分别建立预测模型。主成分分析结合BP神经网络模型对预测集进行预测,平均相对误差为7.35%,均方根误差为3.069 1g.L-1,相关系数为0.902 1。偏最小二乘模型对预测集进行预测,平均相对误差为4.77%,均方根误差为0.130 1g.L-1,相关系数为0.971 8。实验结果证实了舌诊近红外反射光谱可以较为准确地用于总蛋白含量的无创检测。 展开更多
关键词 近红外反射光谱 舌诊 血清总蛋白(TP) BP神经网络 偏最小二乘(PLS)
下载PDF
棉籽17种氨基酸含量的NIRS定标模型构建与测定方法研究 被引量:6
16
作者 黄庄荣 陈进红 +1 位作者 刘海英 祝水金 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第10期2692-2696,共5页
选用氨基酸含量差异较大的多年份、多品种、多地点种植的445份棉花种子为材料,分别对其进行近红外光谱扫描。用一阶导数的数学处理(1,4,4,1)、标准正态变换和去趋势(SNV+D)最佳组合的预处理方法,结合改良的偏最小二乘法(MPL... 选用氨基酸含量差异较大的多年份、多品种、多地点种植的445份棉花种子为材料,分别对其进行近红外光谱扫描。用一阶导数的数学处理(1,4,4,1)、标准正态变换和去趋势(SNV+D)最佳组合的预处理方法,结合改良的偏最小二乘法(MPLS)构建棉籽17种氨基酸成分的近红外定标模型。定标结果表明,天冬氨酸、苏氨酸、谷氨酸、甘氨酸、丙氨酸、缬氨酸、异亮氨酸、亮氨酸、苯丙氨酸、赖氨酸、组氨酸和精氨酸等12种氨基酸含量的定标模型较好,其RPDc为3.735-7.132,外部检验,上为0.910-0.979,近红外光谱分析完全可以替代化学测定;而丝氨酸、蛋氨酸、酪氨酸和脯氨酸等四种氨基酸的定标模型次之,其RP—Dc为2.205-2.814,外部检验r^2为0.800-0.830,近红外分析技术虽不能完全替代化学测定的结果,但仍可用于大量样品的筛选。半胱氨酸定标方程的RPDc较小(RPDc=1.358),因此,棉籽中半胱氨酸含量不能用近红外分析方法进行检测。 展开更多
关键词 棉籽 氨基酸 近红外反射光谱 定标模型
下载PDF
FT-NIRS技术应用于稻米直链淀粉含量分析研究 被引量:10
17
作者 张洪江 吴金红 +2 位作者 梅捍卫 黄芳 罗利军 《植物遗传资源学报》 CAS CSCD 2005年第1期91-95,共5页
运用近红外光谱快速分析技术,使用偏最小二乘法建立了近红外光谱和水稻糙米直链淀粉含量的数学模型,并进行糙米直链淀粉含量预测。结果表明糙米近红外光谱与其直链淀粉含量具有良好的相关性,决定系数r2=0.8429,最大绝对误差4.82%,平均误... 运用近红外光谱快速分析技术,使用偏最小二乘法建立了近红外光谱和水稻糙米直链淀粉含量的数学模型,并进行糙米直链淀粉含量预测。结果表明糙米近红外光谱与其直链淀粉含量具有良好的相关性,决定系数r2=0.8429,最大绝对误差4.82%,平均误差2.30%。该方法在不破坏样品的前提下快速分析水稻直链淀粉含量,可用于稻种资源的快速鉴定,对于水稻优质育种及其相关研究具有重要意义。 展开更多
关键词 含量分析 技术应用 直链淀粉含量 近红外光谱 稻米 快速分析技术 偏最小二乘法 数学模型 含量预测 平均误差 绝对误差 快速鉴定 稻种资源 相关研究 优质育种 糙米 水稻 相关性
下载PDF
近红外光谱技术(NIRS)在牧草领域中的应用研究进展 被引量:3
18
作者 严旭 白史且 +2 位作者 鄢家俊 干友民 刀志学 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2012年第7期1748-1753,共6页
牧草是草食动物最主要的营养来源。牧草品质的优劣不仅影响家畜的生长发育和生产效率,也决定着最终畜产品的产量与品质。牧草品质的优劣主要取决于牧草营养成分及其消化率、适口性、以及牧草中所含抗营养因子和真菌毒素、霉菌毒素的含... 牧草是草食动物最主要的营养来源。牧草品质的优劣不仅影响家畜的生长发育和生产效率,也决定着最终畜产品的产量与品质。牧草品质的优劣主要取决于牧草营养成分及其消化率、适口性、以及牧草中所含抗营养因子和真菌毒素、霉菌毒素的含量水平。近红外光谱技术(NIRS)是一种低成本、快速、简单、无损的定性、定量分析技术,已在许多领域广泛应用。该文简要介绍了NIRS的原理和特点,详细综述了NIRS在牧草品质分析、牧草育种、牧草品种鉴定和性状分类中的应用。通过较全面综述NIRS在牧草领域中的应用现状,以期有助于NIRS在我国牧草领域中的发展。 展开更多
关键词 牧草 近红外光谱技术(nirS) 品质 育种 鉴定 分类
下载PDF
应用近红外(NIRS)技术分析小样品油菜籽粒含油量及硫甙含量 被引量:4
19
作者 张美华 刘丽 +1 位作者 俎峰 王敬乔 《南方农业学报》 CAS CSCD 北大核心 2013年第1期28-32,共5页
【目的】对193份甘蓝型油菜籽粒进行常量样品(3.0g)及小量样品(0.3g)含油量及硫甙含量近红外光谱分析技术(NIRS)分析和回归模型研究,以期在育种过程中建立实用的油菜小样品含油量及硫甙含量测定数学模型。【方法】利用NIRS对甘蓝型油菜... 【目的】对193份甘蓝型油菜籽粒进行常量样品(3.0g)及小量样品(0.3g)含油量及硫甙含量近红外光谱分析技术(NIRS)分析和回归模型研究,以期在育种过程中建立实用的油菜小样品含油量及硫甙含量测定数学模型。【方法】利用NIRS对甘蓝型油菜籽粒进行含油量及硫甙含量测定,并进行回归分析。【结果】在众多回归模型中,对于小量样品籽粒含油量及硫甙含量,二次模型均为最优拟合模型,回归方程式分别为:y=40.190+0.892x-0.007x2(R2=0.970);y=-92.040+0.748x+0.002x2(R2=0.960)(y为常量测量结果,x为小量测量结果)。【结论】获得的二次回归方程式可以很好地将小量样品测定数据转化为常量样品分析结果,为高含油量和低硫甙油菜品种的选育奠定基础。 展开更多
关键词 近红外 甘蓝型油菜 含油量 低硫甙 回归分析
下载PDF
NIRS结合TQ软件对氯化铵掺假牛奶定量分析 被引量:2
20
作者 范睿 周勇 +5 位作者 孙晓凯 牛金叶 孙发哲 陈杰 孔玲 陈志伟 《安徽农业科学》 CAS 2017年第7期87-91,共5页
[目的]应用近红外光谱法建立氯化铵掺假牛奶定量分析模型。[方法]氯化铵是提高牛奶中含氮量的典型掺假物质,样品直接使用近红外光谱仪采用漫反射和三氯乙酸预处理后使用透射模块分别扫描并建立定量分析模型,并对模型进行验证。[结果]建... [目的]应用近红外光谱法建立氯化铵掺假牛奶定量分析模型。[方法]氯化铵是提高牛奶中含氮量的典型掺假物质,样品直接使用近红外光谱仪采用漫反射和三氯乙酸预处理后使用透射模块分别扫描并建立定量分析模型,并对模型进行验证。[结果]建立了漫反射氯化铵含量定量分析模型和透射氯化铵含量定量分析模型,后者模型更加准确可靠,均方根校正标准差(RMSEC)、相关系数(R2)、均方根预测标准差(RMSEP)分别为0.032 4、0.998 4、0.049 8,回收率为107.607 4%。[结论]三氯乙酸预处理后的透射模型更加精确,可以用于牛奶中氯化铵掺假检测,为进一步研究牛奶中其他物质掺假检测提供借鉴。 展开更多
关键词 牛奶 近红外 氯化铵 透射 漫反射
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部