Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) gene...Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) generation and advection were the most important KE sources,while friction and sub-grid processes were the main KE sinks.There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs.The Coriolis force was important for the formation and maintenance of the SWV.Convergence was also an important factor for maintenance,as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex(vortex B).The conversion from available potential energy(APE) to KE of divergent wind can lead to strong convection.Vertical motion influenced APE by dynamical and thermal processes which had opposite effects. The variation of APE was related to the heavy rainfall and convection;in this case,vertical motion with direct thermal circulation was the most important way in which APE was released,while latent heat release and vertical temperature advection were important for APE generation.展开更多
In this study, kinetic energy budget equations of rotational and divergent flow in pressure coordinates are derived on terrain-following coordinates. The new formulation explicitly shows the terrain effects and can be...In this study, kinetic energy budget equations of rotational and divergent flow in pressure coordinates are derived on terrain-following coordinates. The new formulation explicitly shows the terrain effects and can be applied directly to model-simulated dynamic and thermodynamic fields on the model's original vertical grid. Such application eliminates interpolation error and avoids errors in virtual weather systems in mountainous areas. These advantages and their significance are demonstrated by a numerical study in terrain-following coordinates of a developing vortex after it moves over the Tibetan Plateau in China.展开更多
In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the...In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow.展开更多
Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest v...Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.展开更多
In this paper, semi 3D models for segmental Bridge decks are created in ABAQUS CFD program with the support of MATLAB codes to simulate and analyze vortex shedding generated due to wind excitation through considering ...In this paper, semi 3D models for segmental Bridge decks are created in ABAQUS CFD program with the support of MATLAB codes to simulate and analyze vortex shedding generated due to wind excitation through considering the stationary position of the deck. Three parameters (wind speed, deck streamlined length and dynamic viscosity of the air) are dedicated to study their effects on the kinetic energy of the system in addition to the shapes and patterns of the vortices. Two benchmarks from the literature Von Karman and Dyrbye and Hansen are considered to validate the vortex shedding aspects for the CFD models. Good agreement between the results of the benchmarks and the semi 3D models has been detected. Latin hypereube experimental method is dedicated to generate the surrogate models for the kinetic energy of the system and the lift forces. Variance based sensitivity analysis is utilized to calculate the main sensitivity indices and the interaction orders for all the three parameters. The kinetic energy approach performed very well in revealing the rational effects and the roles of each parameter in the generation of vortex shedding and predicting vortex induced vibration of the deck.展开更多
To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation ...To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation values of an axial flow pump,followed by experimental validation.The experimental result shows that compared with the shear stress transport(SST)k-ωmodel,the PANS model significantly reduces the eddy viscosity of the flow field to make the vortex structure clearer and allow the turbulence scale to be more robustly analyzed.The cavitation area within the axial flow pump mainly comprises of TLV cavitation,clearance cavitation and tip leakage flows combined effect of triangular cloud cavitation formed.The formation and development of cavitation are accompanied by the formation and evolution of vortex,and variations in vortex structure also generate and promote the development of cavitation.In addition,an in-depth analysis of the relationship between the turbulent kinetic energy(TKE)transport equation and cavitation patterns was also conducted,finding that the regions with relatively high TKE are mainly distributed around gas/liquid boundaries with serious cavitation and evident gas-liquid change.This phenomenon is mainly attributed to the combined effect of the pressure action term,stress diffusion term and TKE production term.展开更多
Turbulence kinetic energies in confined vortex flows have been studied. The studies were based on the experiments performed in a vortex chamber. In the experiments, a Laser Doppler Anemometry (LDA) was used to perform...Turbulence kinetic energies in confined vortex flows have been studied. The studies were based on the experiments performed in a vortex chamber. In the experiments, a Laser Doppler Anemometry (LDA) was used to perform flow measurements inside the vortex chamber, which provided the data for the kinetic energy analysis. The studies concentrated on the influences of the contraction ratio and the inlet air flow rate on the kinetic energy, and analyzed the characteristics of the kinetic energy in the confined vortex flows, including the distributions of the tangential component, radial component and total turbulence kinetic energy. In the paper, both the experimental techniques and the experimental results were presented. Based on a similarity analysis and the experimental data, an empirical scaling formula was proposed so that the tangential component of the turbulence kinetic energy was dependent only on the parameter of the contraction ratio.展开更多
2006年7月19—24日,东北地区出现一次明显的冷涡发展导致强降水的过程.对这次东北冷涡过程的天气形势分析表明,该东北冷涡的维持和发展与冷涡东部阻塞高压的建立与消亡有关.本文根据500hPa环流形势演变特征,将东北冷涡发生发展过程分为...2006年7月19—24日,东北地区出现一次明显的冷涡发展导致强降水的过程.对这次东北冷涡过程的天气形势分析表明,该东北冷涡的维持和发展与冷涡东部阻塞高压的建立与消亡有关.本文根据500hPa环流形势演变特征,将东北冷涡发生发展过程分为4个阶段,并借助调和-余弦谱展开方法,对东北冷涡各阶段850hPa水平风和水汽通量进行无辐散和无旋转分量分解,分析各阶段无旋转风动能和无辐散风动能之间的能量转化.研究结果表明,分解得到的无辐散风及其水汽通量清楚地展现出了东北冷涡的大尺度环流和水汽输送通道及水汽来源,而从无旋转风及其水汽通量上则可以直观地看到冷涡低层的中小尺度风场及水汽辐合辐散区,为分析东北冷涡内部对流提供帮助.东北冷涡发展的不同阶段其水汽来源有所不同,初始阶段的水汽主要来自黄海和渤海地区,发展阶段水汽主要来自日本海,而到成熟阶段和减弱阶段,水汽输送通道被破坏,冷涡的水汽供应大大减少,与同时期暴雨减弱一致.同时,无旋转风辐合强值区和无旋转风水汽通量大值区的重合区域有利于强对流的发生发展,表现为重合区与TBB(Temperature of Black Body,黑体辐射温度)强对流云带的形状和位置对应良好,与降水落区也较为一致,可为预报东北冷涡引发的强降水落区这一预报难点问题提供参考.从动能转化上看,无旋转风和无辐散风的动能转化项能很好地反映东北冷涡整个生命史过程中各阶段强度的变化特点,对冷涡强度预报具有一定的指示意义.展开更多
Acquisition of the temperature distributions inside the vortex tube is a principal and key problem for disclosing the fundamental mechanism underlying the energy separation effect inside the tube.The “Realizable κ-...Acquisition of the temperature distributions inside the vortex tube is a principal and key problem for disclosing the fundamental mechanism underlying the energy separation effect inside the tube.The “Realizable κ-ε” turbulence model of computational fluid dynamics (CFD) was used to simulate the energy separation effect produced by three-dimensional compressible flow with strong swirl inside the vortex tube.Then the axial and radial distributions of total and static temperature were obtained.The mean kinetic energies and the stagnation enthalpies of the peripheral and inner flows per unit mass along the airflow direction were also examined respectively because the enveloping surface of zero axial velocity is the interface between peripheral and inner airflows.In order to validate the numerical results, comparisons between the numerical predictions and the experimental results were conducted for the cold air temperature drops as a function of cold fraction, and satisfactory agreements were observed.A non-dimensional strategy was adopted to compare total, static temperature distributions along the radial direction at a given axial location with the experimental data from previous studies, so the accuracy of the numerical results was further validated.展开更多
基金supported by the project of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences (Grant No.2010LASW-A02)National Natural Science Foundation of China(Grant No.40875021)+1 种基金the project of the National Key Basic Research and Development of China(No.2009CB421401)the Chinese Special Scientific Research Project for Public Interest(Grant No. GYHY200906004).
文摘Energy budgets were analyzed to study the development of an eastward propagating southwest vortex (SWV) associated with heavy rainfall over southern China(11-13 June 2008).The results show that kinetic energy(KE) generation and advection were the most important KE sources,while friction and sub-grid processes were the main KE sinks.There was downward conversion from divergent to rotational wind KE consistent with the downward stretching of SWVs.The Coriolis force was important for the formation and maintenance of the SWV.Convergence was also an important factor for maintenance,as was vertical motion during the mature stage of the SWV and the formation stage of a newly formed vortex(vortex B).The conversion from available potential energy(APE) to KE of divergent wind can lead to strong convection.Vertical motion influenced APE by dynamical and thermal processes which had opposite effects. The variation of APE was related to the heavy rainfall and convection;in this case,vertical motion with direct thermal circulation was the most important way in which APE was released,while latent heat release and vertical temperature advection were important for APE generation.
基金supported by the Key Program of the Chinese Academy of Sciences(No.KZZD-EW-05-01)the Supporting Program for Science and Technological Research of China(No.2008BAC37B01)+1 种基金the National Basic Research Program of China(Nos.2012CB417201 and 2009CB421505)the National Natural Sciences Foundation of China(Nos.41205033 and 41175056)
文摘In this study, kinetic energy budget equations of rotational and divergent flow in pressure coordinates are derived on terrain-following coordinates. The new formulation explicitly shows the terrain effects and can be applied directly to model-simulated dynamic and thermodynamic fields on the model's original vertical grid. Such application eliminates interpolation error and avoids errors in virtual weather systems in mountainous areas. These advantages and their significance are demonstrated by a numerical study in terrain-following coordinates of a developing vortex after it moves over the Tibetan Plateau in China.
文摘In this work, we study approximations of supercritical or suction vortices in tornadic flows and their contribution to tornadogenesis and tornado maintenance using self-avoiding walks on a cubic lattice. We extend the previous work on turbulence by A. Chorin and collaborators to approximate the statistical equilibrium quantities of vortex filaments on a cubic lattice when both an energy and a statistical temperature are involved. Our results confirm that supercritical (smooth, “straight”) vortices have the highest average energy and correspond to negative temperatures in this model. The lowest-energy configurations are folded up and “balled up” to a great extent. The results support A. Chorin’s findings that, in the context of supercritical vortices in a tornadic flow, when such high-energy vortices stretch, they need to fold and transfer energy to the surrounding flow, contributing to tornado maintenance or leading to its genesis. The computations are performed using a Markov Chain Monte Carlo approach with a simple sampling algorithm using local transformations that allow the results to be reliable over a wide range of statistical temperatures, unlike the originally used pivot algorithm that only performs well near infinite temperatures. Efficient ways to compute entropy are discussed and show that a system with supercritical vortices will increase entropy by having these vortices fold and transfer their energy to the surrounding flow.
基金Key Project of Joint Meteorological Fund of the National Natural Science Foundation of China (U2242202)Key Project of the National Natural Science Foundation of China (42030611)+1 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J016)Innovation Team Fund of Sichuan Provincial Meteorological Service (SCQXCX7D-202201)。
文摘Based on ERA5 reanalysis data,the present study analyzed the thermal energy development mechanism and kinetic energy conversion characteristics of two extreme rainstorm processes in relation to the shallow southwest vortex in the warm-sector during a“rain-generated vortex”process and the deep southwest vortex in a“vortex-generated rain”process.The findings were as follows:(1)During the extreme rainstorm on August 11,2020(hereinafter referred to as the“8·11”process),intense surface heating and a high-energy unstable environment were observed.The mesoscale convergence system triggered convection to produce heavy rainfall,and the release of latent condensation heat generated by the rainfall promoted the formation of a southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy preceded the increase(decrease)in vorticity.By contrast,the extreme rainstorm on August 16,2020(hereinafter referred to as the“8·16”process)involved the generation of southwest vortex in a low-energy and highhumidity environment.The dynamic uplift of the southwest vortex triggered rainfall,and the release of condensation latent heat from rainfall further strengthened the development of the southwest vortex.The significant increase(decrease)in atmospheric diabatic heating and kinetic energy exhibited a delayed progression compared to the increase(decrease)in vorticity.(2)The heating effect around the southwest vortex region was non-uniform,and the heating intensity varied in different stages.In the“8·11”process,the heating effect was the strongest in the initial stage,but weakened during the vortex's development.On the contrary,the heating effect was initially weak in the“8·16”process,and intensified during the development stage.(3)The available potential energy of the“8·11”process significantly increased in kinetic energy converted from rotational and divergent winds through baroclinic action,and the divergent wind energy continued to convert into rotational wind energy.By contrast,the“8·16”process involved the conversion of rotational wind energy into divergent wind energy,which in turn converted kinetic energy back into available potential energy,thereby impeding the further development and maintenance of the southwest vortex.
文摘In this paper, semi 3D models for segmental Bridge decks are created in ABAQUS CFD program with the support of MATLAB codes to simulate and analyze vortex shedding generated due to wind excitation through considering the stationary position of the deck. Three parameters (wind speed, deck streamlined length and dynamic viscosity of the air) are dedicated to study their effects on the kinetic energy of the system in addition to the shapes and patterns of the vortices. Two benchmarks from the literature Von Karman and Dyrbye and Hansen are considered to validate the vortex shedding aspects for the CFD models. Good agreement between the results of the benchmarks and the semi 3D models has been detected. Latin hypereube experimental method is dedicated to generate the surrogate models for the kinetic energy of the system and the lift forces. Variance based sensitivity analysis is utilized to calculate the main sensitivity indices and the interaction orders for all the three parameters. The kinetic energy approach performed very well in revealing the rational effects and the roles of each parameter in the generation of vortex shedding and predicting vortex induced vibration of the deck.
基金supported by the National Natural Science Foundation of China(Grant No.52376035).
文摘To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation values of an axial flow pump,followed by experimental validation.The experimental result shows that compared with the shear stress transport(SST)k-ωmodel,the PANS model significantly reduces the eddy viscosity of the flow field to make the vortex structure clearer and allow the turbulence scale to be more robustly analyzed.The cavitation area within the axial flow pump mainly comprises of TLV cavitation,clearance cavitation and tip leakage flows combined effect of triangular cloud cavitation formed.The formation and development of cavitation are accompanied by the formation and evolution of vortex,and variations in vortex structure also generate and promote the development of cavitation.In addition,an in-depth analysis of the relationship between the turbulent kinetic energy(TKE)transport equation and cavitation patterns was also conducted,finding that the regions with relatively high TKE are mainly distributed around gas/liquid boundaries with serious cavitation and evident gas-liquid change.This phenomenon is mainly attributed to the combined effect of the pressure action term,stress diffusion term and TKE production term.
文摘Turbulence kinetic energies in confined vortex flows have been studied. The studies were based on the experiments performed in a vortex chamber. In the experiments, a Laser Doppler Anemometry (LDA) was used to perform flow measurements inside the vortex chamber, which provided the data for the kinetic energy analysis. The studies concentrated on the influences of the contraction ratio and the inlet air flow rate on the kinetic energy, and analyzed the characteristics of the kinetic energy in the confined vortex flows, including the distributions of the tangential component, radial component and total turbulence kinetic energy. In the paper, both the experimental techniques and the experimental results were presented. Based on a similarity analysis and the experimental data, an empirical scaling formula was proposed so that the tangential component of the turbulence kinetic energy was dependent only on the parameter of the contraction ratio.
文摘2006年7月19—24日,东北地区出现一次明显的冷涡发展导致强降水的过程.对这次东北冷涡过程的天气形势分析表明,该东北冷涡的维持和发展与冷涡东部阻塞高压的建立与消亡有关.本文根据500hPa环流形势演变特征,将东北冷涡发生发展过程分为4个阶段,并借助调和-余弦谱展开方法,对东北冷涡各阶段850hPa水平风和水汽通量进行无辐散和无旋转分量分解,分析各阶段无旋转风动能和无辐散风动能之间的能量转化.研究结果表明,分解得到的无辐散风及其水汽通量清楚地展现出了东北冷涡的大尺度环流和水汽输送通道及水汽来源,而从无旋转风及其水汽通量上则可以直观地看到冷涡低层的中小尺度风场及水汽辐合辐散区,为分析东北冷涡内部对流提供帮助.东北冷涡发展的不同阶段其水汽来源有所不同,初始阶段的水汽主要来自黄海和渤海地区,发展阶段水汽主要来自日本海,而到成熟阶段和减弱阶段,水汽输送通道被破坏,冷涡的水汽供应大大减少,与同时期暴雨减弱一致.同时,无旋转风辐合强值区和无旋转风水汽通量大值区的重合区域有利于强对流的发生发展,表现为重合区与TBB(Temperature of Black Body,黑体辐射温度)强对流云带的形状和位置对应良好,与降水落区也较为一致,可为预报东北冷涡引发的强降水落区这一预报难点问题提供参考.从动能转化上看,无旋转风和无辐散风的动能转化项能很好地反映东北冷涡整个生命史过程中各阶段强度的变化特点,对冷涡强度预报具有一定的指示意义.
文摘Acquisition of the temperature distributions inside the vortex tube is a principal and key problem for disclosing the fundamental mechanism underlying the energy separation effect inside the tube.The “Realizable κ-ε” turbulence model of computational fluid dynamics (CFD) was used to simulate the energy separation effect produced by three-dimensional compressible flow with strong swirl inside the vortex tube.Then the axial and radial distributions of total and static temperature were obtained.The mean kinetic energies and the stagnation enthalpies of the peripheral and inner flows per unit mass along the airflow direction were also examined respectively because the enveloping surface of zero axial velocity is the interface between peripheral and inner airflows.In order to validate the numerical results, comparisons between the numerical predictions and the experimental results were conducted for the cold air temperature drops as a function of cold fraction, and satisfactory agreements were observed.A non-dimensional strategy was adopted to compare total, static temperature distributions along the radial direction at a given axial location with the experimental data from previous studies, so the accuracy of the numerical results was further validated.