期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A MULTISCALE MECHANICAL MODEL FOR MATERIALS BASED ON VIRTUAL INTERNAL BOND THEORY 被引量:6
1
作者 Zhang Zhennan Ge Xiurun Li Yonghe 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第3期196-202,共7页
Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to... Only two macroscopic parameters are needed to describe the mechanical properties of linear elastic solids, i.e. the Poisson's ratio and Young's modulus. Correspondingly, there should be two microscopic parameters to determine the mechanical properties of material if the macroscopic mechanical properties of linear elastic solids are derived from the microscopic level. Enlightened by this idea, a multiscale mechanical model for material, the virtual multi-dimensional internal bonds (VMIB) model, is proposed by incorporating a shear bond into the virtual internal bond (VIB) model. By this modification, the VMIB model associates the macro mechanical properties of material with the microscopic mechanical properties of discrete structure and the corresponding relationship between micro and macro parameters is derived. The tensor quality of the energy density function, which contains coordinate vector, is mathematically proved. From the point of view of VMIB, the macroscopic nonlinear behaviors of material could be attributed to the evolution of virtual bond distribution density induced by the imposed deformation. With this theoretical hypothesis, as an application example, a uniaxial compressive failure of brittle material is simulated. Good agreement between the experimental results and the simulated ones is found. 展开更多
关键词 virtual multi-dimensional internal bond material property dimensionality multiscale modeling molecular dynamics virtual internal bond
下载PDF
Virtual multi-dimensional internal bonds model and its application in simulation of rock mass 被引量:2
2
作者 ZHANG ZhenNan1,2 & GE XiuRun3,4 1 Department of Civil Engineering,Shanghai University,Shanghai 200072,China 2 Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072, China +1 位作者 3 Institute of Geotechnical Engineering,Shanghai Jiao Tong University,Shanghai 200030,China 4 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan 430071,China 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第2期192-201,共10页
VMIB (virtual multi-dimensional internal bonds) is a multiscale mechanical model developed from the VIB (virtual internal bond) theory. In VIB theory,the solid mate-rial is considered to consist of random-distributed ... VMIB (virtual multi-dimensional internal bonds) is a multiscale mechanical model developed from the VIB (virtual internal bond) theory. In VIB theory,the solid mate-rial is considered to consist of random-distributed material particles in microscale. These particles are connected with normal bonds. The macro constitutive relation is derived from the cohesive law between particles. However,in VMIB,the micro particles are connected with both normal and shear bonds. The macro constitutive relation is derived in terms of bond stiffness coefficients. It has been theoretically certified that there exists a corresponding relationship between the two bond stiffness coefficients and the two macro material constants,i.e. the Young’s modulus and Poisson ratio. This corresponding relationship suggests that it should be necessary and sufficient to simultaneously account for the normal and shear interactions between particles. Due to the fact that the fracture criterion is directly incorporated into the constitutive relation,both VIB and VMIB present many advantages in simulating fractures of materials. In the damage model of rock mass,a damage tensor is usually defined to describe the distribution of cracks. The damage value in one direction determines the relative stiffness of rock mass in this direction. In VMIB solid,the relative distribution density of micro bonds in one direction determines the relative macro stiffness of the material in this direction. The effects of the damage value and the relative distribution density of bonds are consistent. To simulate the failure behavior of rock mass with VMIB,the presented paper sets up a quantitative relationship between the damage tensor and the rela-tive distribution density of bonds. Comparison of the theoretical and the experi-mental results shows that VMIB model can represent the effect of distributed cracks on rock mass with this relationship. The presented work provides a founda-tion for further simulating fracture behavior of rock mass with VMIB model,and an alternative approach for modeling other multi-cracked body. 展开更多
关键词 vmib (virtual multi-dimensional internal bonds) rock mass VIB (virtual internal bonds) multi-cracked body numerical SIMULATION
原文传递
基于VMIB的非均质岩石材料破坏的数值模拟初探 被引量:3
3
作者 张振南 葛修润 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2007年第7期1426-1431,共6页
VMIB模型是在VIB基础上提出的一种新型多尺度力学模型,VIB模型认为固体材料在微观上是由随机分布的质量微粒组成,微粒与微粒之间由一虚内键连接;而在VMIB模型中,微粒与微粒之间则由切向键和法向键共同连接或者由具有法向刚度和切向刚度... VMIB模型是在VIB基础上提出的一种新型多尺度力学模型,VIB模型认为固体材料在微观上是由随机分布的质量微粒组成,微粒与微粒之间由一虚内键连接;而在VMIB模型中,微粒与微粒之间则由切向键和法向键共同连接或者由具有法向刚度和切向刚度的虚内键连接。材料的宏观本构方程直接由微粒之间的相互作用推导出来。由于VMIB能够再现材料泊松比的多样性,因此可以应用到更广泛的工程材料。非均质材料(岩石)由不同的组分构成,因此,材料中各点的力学属性不同。为有效地模拟这种材料的破坏过程,初步将岩石的非均质特性引入到VMIB模型中,并对裂纹的生成及扩展过程进行模拟。数值模拟结果表明:如果将岩石视为均质材料,则在围压下的裂纹扩展具有很强的规则性,出现单一剪切裂纹,岩石呈剪切破坏;如果将岩石视为非均质材料,则多条裂纹同时在不同点处开始生成、扩展并汇合,破坏模式总体上呈剪切破坏。从数值模拟结果来看,该法能够模拟非均质材料(岩石)的破坏过程,并能初步反映非均质特性对宏观裂纹行为的影响。 展开更多
关键词 岩石力学 数值模拟 vmib模型 非均质材料 多尺度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部