水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪...水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪算法。首先对三频信号做线性调频Z变换(Chirp-Z Transform,CZT)得到多普勒先验值,然后利用OFDM符号中的空载波结合载波频偏(Carrier Frequency Offset,CFO)搜索补偿技术,把估计的最优CFO值转换为宽带多普勒因子,进而计算当前符号的加速度并预测下一符号的速度。通过更新加速度对预测值进行修正,实现每个OFDM符号的多普勒估计。数值仿真和湖试结果表明,文中算法不仅能有效跟踪多普勒的变化,在匀速和变速条件下都有较好的补偿性能,而且对帧结构设计要求低,对先验误差不敏感,有利于水声通信系统的工程实现。展开更多
针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频...针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。展开更多
针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高...针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高阶幅度键控调制方式,并利用信号幅度信息完成半相干信道估计。通过两种基于深度学习的算法优化半相干信道估计这一非线性过程,较非相干通信有效提高了频谱效率,较一定信噪比下的相干通信提高了鲁棒性,降低了误比特率和系统复杂度,并利用元学习算法降低深度学习算法对训练数据的依赖。最后,提取海试信道数据,完成OFDM半相干水声通信系统仿真,验证了所提方法在频谱效率和系统误比特率性能方面较非相干和相干通信的优势,当信道长度改变时,基于元学习的算法依然可以获得较好的性能。展开更多
针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)接收机解调精度低和计算复杂度高的问题,采用深度学习方法构建了一种新的模型驱动的接收机模型,称为FBLTNet(Fully Connected,Bi-LSTM and Transformer-encoder Neur...针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)接收机解调精度低和计算复杂度高的问题,采用深度学习方法构建了一种新的模型驱动的接收机模型,称为FBLTNet(Fully Connected,Bi-LSTM and Transformer-encoder Neural Network)。该模型分为信道估计和信号检测两个部分,其中信道估计以全连接神经网络(Fully Connected Deep Neural Network,FCDNN)替代线性插值,信号检测则使用深度自注意力网络编码器Transformer-encoder和双向长短期记忆网络(Bidirectional Long-Short Term Memory,Bi-LSTM)的组合网络,实现信号的解调和比特流的恢复。在瑞利衰落信道下测试了不同调制方式的接收机性能,结果表明FBLTNet与基于深度学习的接收机以及传统接收机相比,误比特率性能得到了显著的改善;与数据驱动的无线接收机算法相比,线下训练模型收敛时间和测试时间分别减少了33.0%和25%,网络结构参数减少了29.5%。展开更多
文摘水声通信中传统宽带多普勒估计方法难以准确跟踪时变多普勒因子,从而导致正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)在变速运动通信场景中补偿性能不佳。针对该问题,文章提出了一种基于空载波的多普勒估计与跟踪算法。首先对三频信号做线性调频Z变换(Chirp-Z Transform,CZT)得到多普勒先验值,然后利用OFDM符号中的空载波结合载波频偏(Carrier Frequency Offset,CFO)搜索补偿技术,把估计的最优CFO值转换为宽带多普勒因子,进而计算当前符号的加速度并预测下一符号的速度。通过更新加速度对预测值进行修正,实现每个OFDM符号的多普勒估计。数值仿真和湖试结果表明,文中算法不仅能有效跟踪多普勒的变化,在匀速和变速条件下都有较好的补偿性能,而且对帧结构设计要求低,对先验误差不敏感,有利于水声通信系统的工程实现。
文摘针对现有正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统信道估计和迭代检测算法中频谱效率低和鲁棒性差等问题,提出了一种基于酉近似消息传递和叠加导频的信道估计与联合检测方法。首先,在软调制/解调中叠加导频对正交幅度调制的星座点进行预处理,检测时将叠加的导频作为频域符号的先验分布,利用置信传播算法进行调制和解调,实现检测模型的简化。然后,应用因子图-消息传递算法对OFDM传输系统和信道进行建模和全局优化,引入酉变换加强信道估计算法的鲁棒性。最后,建立OFDM仿真环境对现有方法进行仿真分析。仿真结果表明,相对于现有的独立导频类算法,所提算法能够以相同复杂度显著提升OFDM系统的频谱效率和鲁棒性。
文摘针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)水声通信中常用的相干和非相干通信分别面临的对多普勒敏感和频谱效率低的问题,提出一种高阶幅度键控调制的半相干通信技术,将OFDM符号时频帧结构中全部频点采用高阶幅度键控调制方式,并利用信号幅度信息完成半相干信道估计。通过两种基于深度学习的算法优化半相干信道估计这一非线性过程,较非相干通信有效提高了频谱效率,较一定信噪比下的相干通信提高了鲁棒性,降低了误比特率和系统复杂度,并利用元学习算法降低深度学习算法对训练数据的依赖。最后,提取海试信道数据,完成OFDM半相干水声通信系统仿真,验证了所提方法在频谱效率和系统误比特率性能方面较非相干和相干通信的优势,当信道长度改变时,基于元学习的算法依然可以获得较好的性能。
文摘针对正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)接收机解调精度低和计算复杂度高的问题,采用深度学习方法构建了一种新的模型驱动的接收机模型,称为FBLTNet(Fully Connected,Bi-LSTM and Transformer-encoder Neural Network)。该模型分为信道估计和信号检测两个部分,其中信道估计以全连接神经网络(Fully Connected Deep Neural Network,FCDNN)替代线性插值,信号检测则使用深度自注意力网络编码器Transformer-encoder和双向长短期记忆网络(Bidirectional Long-Short Term Memory,Bi-LSTM)的组合网络,实现信号的解调和比特流的恢复。在瑞利衰落信道下测试了不同调制方式的接收机性能,结果表明FBLTNet与基于深度学习的接收机以及传统接收机相比,误比特率性能得到了显著的改善;与数据驱动的无线接收机算法相比,线下训练模型收敛时间和测试时间分别减少了33.0%和25%,网络结构参数减少了29.5%。