Growth of single-crystal Sn O_2 nanowires using a fluorine-doped Sn O_2(FTO) thin film as both the source and substrate is demonstrated for the first time at relatively low temperature(580 °C) which preserves the...Growth of single-crystal Sn O_2 nanowires using a fluorine-doped Sn O_2(FTO) thin film as both the source and substrate is demonstrated for the first time at relatively low temperature(580 °C) which preserves the integrity of the underlying glass support and improves scalability to devices. Furthermore, a microwave hydrothermal process is shown to grow Ti O_2 nanorods on these nanowires to create a hierarchical nanoheterostructure that will lead to efficient photogenerated charge carrier separation and rapid transport of electrons to the substrate. This process simplifies nanowire growth by using commercially available and widely used FTO substrates without the need for an additional upstream Sn source and can be used as a high surface area host structure to many other hierarchical structures.展开更多
Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-...Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.展开更多
基金funded by a NASA Space Technology Research Fellowshipa Facilities Grant from the Institute for Materials Research(IMR)at The Ohio State University
文摘Growth of single-crystal Sn O_2 nanowires using a fluorine-doped Sn O_2(FTO) thin film as both the source and substrate is demonstrated for the first time at relatively low temperature(580 °C) which preserves the integrity of the underlying glass support and improves scalability to devices. Furthermore, a microwave hydrothermal process is shown to grow Ti O_2 nanorods on these nanowires to create a hierarchical nanoheterostructure that will lead to efficient photogenerated charge carrier separation and rapid transport of electrons to the substrate. This process simplifies nanowire growth by using commercially available and widely used FTO substrates without the need for an additional upstream Sn source and can be used as a high surface area host structure to many other hierarchical structures.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174137,11474215 and 21204058the Natural Science Foundation for the Youth of Jiangsu Province under Grant No BK20130284the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Titanium dioxide (TiO2) loaded tungsten trioxide (WO3) composite films are prepared by an E-beam vapor system. Associated with the existence of a heterojunction at the interface of TiO2 and WO3, the prepared TiO2-WO3 composite film shows enhanced photocurrent density, four times than the pure WO3 film illuminated under xenon lamp, and higher incident-photon-to-current conversion e^ciency. By varying the initial TiO2 film thickness, such composite structures could be optimized to obtain the highest photocurrent density. We believe that thin TiO2 films improve the light response and increase the surface roughness of WO3 films. Furthermore, the existence of the heterojunction results in the e^cient charge carriers' separation, transfer process, and a lower recombination of electron-hole pairs, which is beneficial for the enhancement of photocurrent density.
基金National Natural Science Foundation of China(51172200)Ph.D.Programs Foundation of Ministry of Education of China(20100101120105)National "Twelfth Five-Year" Plan for Science & Technology Support,(2011BAE14B02)