Volatile organic compounds (VOCs) play ,an important role in ozone and secondary organic aerosol (SOA) formation, but VOCs sources during winter are not fully understood. To investigate VOCs sources during winter,...Volatile organic compounds (VOCs) play ,an important role in ozone and secondary organic aerosol (SOA) formation, but VOCs sources during winter are not fully understood. To investigate VOCs sources during winter, mixing ratios of C2-C12 VOCs were measured at an urban site in Beijing from December 29, 2011 to January 17, 2012. Correlation analysis of toluene to benzene and i-pentane to n-pentane suggest that coal combustion could also be an important source for VOCs besides vehicular emissions. Source apportionment results show that coal combustion and vehicular emissions contributed 28%-39% and 31%-45% to ambient VOCs during winter, respectively. Backward trajectory analyses demonstrated that contributions from the burning of coal were higher when air masses came from southern regions outside Beijing. Close attention should be paid to VOCs emissions from coal combustion in Beijing city and the vicinity to the South.展开更多
To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Sh...To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.展开更多
基金funded by the Natural Science Foundation for Outstanding Young Scholars(No.41125018)
文摘Volatile organic compounds (VOCs) play ,an important role in ozone and secondary organic aerosol (SOA) formation, but VOCs sources during winter are not fully understood. To investigate VOCs sources during winter, mixing ratios of C2-C12 VOCs were measured at an urban site in Beijing from December 29, 2011 to January 17, 2012. Correlation analysis of toluene to benzene and i-pentane to n-pentane suggest that coal combustion could also be an important source for VOCs besides vehicular emissions. Source apportionment results show that coal combustion and vehicular emissions contributed 28%-39% and 31%-45% to ambient VOCs during winter, respectively. Backward trajectory analyses demonstrated that contributions from the burning of coal were higher when air masses came from southern regions outside Beijing. Close attention should be paid to VOCs emissions from coal combustion in Beijing city and the vicinity to the South.
基金Financial support for this work is provided by the Shunde Environment ProtectionTransportation and Urban Administration Bureau(no.0851-1361FS02CL51)+5 种基金the Guangdong Provincial Science and Technology Plan Projects(no.2014A050503019)Guangzhou Environmental Protection Bureau(no.x2hjB2150020)supported by the funding of State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complexthe project of Atmospheric Haze Collaboration Control Technology Design(no.XDB05030400)from Chinese Academy of Sciencesthe Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund(U1501501)(the second phase)the Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal(no.b2152120)
文摘To develop a sound ozone(O_3) pollution control strategy,it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O_3.Using the "Shunde" city as a pilot summer case study,we apply an innovative response surface modeling(RSM) methodology based on the Community Multi-Scale Air Quality(CMAQ) modeling simulations to identify the O_3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O_3 impacts of volatile organic compound(VOC) control strategy.Our results show that Shunde is a typical VOC-limited urban O_3 polluted city.The "Jiangmen" city,as the main upper wind area during July 2014,its VOCs and nitrogen oxides(NO_x) emissions make up the largest contribution(9.06%).On the contrary,the contribution from local(Shunde) emission is lowest(6.35%) among the seven neighbor regions.The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde.The results of dynamic source contribution analysis further show that the local NO_x control could slightly increase the ground O_3 under low(10.00%) and medium(40.00%)reduction ratios,while it could start to turn positive to decrease ground O_3 under the high NO_x abatement ratio(75.00%).The real-time assessment of O_3 impacts from VOCs control strategies in Pearl River Delta(PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O_3 concentration in Shunde.