期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于K-CNN-BiLSTM的关联区域VOCs浓度时空关联预测 被引量:6
1
作者 黄光球 王瑞泽 陆秋琴 《安全与环境学报》 CAS CSCD 北大核心 2023年第4期1336-1348,共13页
为了提升关联区域内VOCs浓度预测精度,基于深度学习理论构造了K-CNN-BiLSTM时空关联预测模型。同时,为了实现VOCs精细化治理,首先对研究区域进行了网格划分,采用IDW进行空间插值,计算整理得到VOCs的网格数据集。其次使用KNN算法计算空... 为了提升关联区域内VOCs浓度预测精度,基于深度学习理论构造了K-CNN-BiLSTM时空关联预测模型。同时,为了实现VOCs精细化治理,首先对研究区域进行了网格划分,采用IDW进行空间插值,计算整理得到VOCs的网格数据集。其次使用KNN算法计算空间相关性筛选得到空间相关矩阵,按照时序排列拼接成时空类图。然后将时空类图输入CNN模型中提取局部时空特征,最后将提取的时空特征送入双向LSTM中进行全局预测。以西安市某区为例,对VOCs浓度进行预测,并将预测结果进行时空分布可视化。结果表明:模型具备单步预测和多步预测能力,同时与CNN-BiLSTM、CNN-LSTM和LSTM相比考虑了VOCs浓度数据的时空关联性,预测精度更高;平均均方根误差(RMSE)、平均绝对值误差(MAE)和平均绝对百分比误差(MAPE)分别为6.352、5.442和10.252%,均优于对比模型。 展开更多
关键词 环境工程学 vocs浓度预测 KNN CNN-BiLSTM 时空关联
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部