A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated wate...A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.展开更多
This is a numerical study of a falling droplet surrounding by air under the electric field modeled with finite volume method by means of CFD.The VOF method has been employed to model the two-phase flow of the present ...This is a numerical study of a falling droplet surrounding by air under the electric field modeled with finite volume method by means of CFD.The VOF method has been employed to model the two-phase flow of the present study.Various capillary numbers are investigated to analyze the effects of electric field intensity on the falling droplet deformation.Also,the effects of electric potential on the heat transfer coefficient have been examined.The obtained results showed that by applying the electric field at a capillary number of 0.2 the droplet tends to retain its primitive shape as time goes by,with a subtle deformation to an oblate form.Intensifying the electric field to a capillary number of 0.8 droplet deformation is almost insignificantwith time progressing;however,further enhancement in capillary number to 2 causes the droplet to deform as a prolate shape and higher values of this number intensify the prolate form deformation of the droplet and result in pinch-off phenomenon.Ultimately,it is showed that as the electric potential augments the heat transfer coefficient increases in which for electric potential values higher than 2400 V the heat transfer coefficient enhances significantly.展开更多
Sediments in the seabed hold vital clues to the study of marine geology,microbial communities and history of ocean life,and the remote operated vehicle(ROV)mounted tubular sampling is an important way to obtain sedime...Sediments in the seabed hold vital clues to the study of marine geology,microbial communities and history of ocean life,and the remote operated vehicle(ROV)mounted tubular sampling is an important way to obtain sediments.However,sampling in the seabed is a particularly difficult and complicated task due to the difficulty accessing deep water layers.The sampling is affected by the sampler’s structural parameters,operation parameters and the interaction between the sampling tube and sediments,which usually results in low volume and coring rate of sediments obtained.This paper simulated the soft viscous seabed sediments as non-Newtonian Herschel-Bulkley viscoplastic fluids and established a numerical model for the tubular sampling based on the volume of fluid(VOF)method.The influence rules of the sampling tube diameter,drainage area rate,penetration velocity,and sediments dynamic viscosity on coring rate and volume were studied.The results showed that coring volume was negatively correlated with all the parameters except the sampling tube diameter.Furthermore,coring rate decreased with increases in penetration velocity,drainage area rate,and sediments dynamic viscosity.The coring rate first increased and then decreased with increasing of the sampling tube diameter,and the peak value was also influenced by penetration velocity.Then,based on the numerical simulation results,an experimental sampling platform was set up and real-world sampling experiments were conducted.The simulation results tallied with the experimental results,with a maximum absolute error of only 4.6%,which verified that the numerical simulation model accurately reflected real-world sampling.The findings in this paper can provide a theoretical basis for facilitating the optimal design of the geometric structure of the seabed sediments samplers and the parameters in the sampling process.展开更多
Jetting succeeded by accumulation is the characteristic of the vacuum filling,which is different from the conventional pressure-driven flow.In order to simulate this kind of flow,a three-dimensional theoretical model ...Jetting succeeded by accumulation is the characteristic of the vacuum filling,which is different from the conventional pressure-driven flow.In order to simulate this kind of flow,a three-dimensional theoretical model in terms of incompressible and viscous flow is established,and an iterative method combined with finite element method(FEM)is proposed to solve the flow problem.The Lagranian-VOF method is constructed to trace the jetting and accumulated flow fronts.Based on the proposed model and algorithm,a simulation program is developed to predict the velocity,pressure,temperature,and advancement progress.To validate the model and algorithm,a visual experimental equipment for vacuum filling is designed and construted.The vacuum filling experiments with different viscous materials and negative pressures were conducted and compared with the corresponding simulations.The results show the flow front shape closely depends on the fluid viscosity and less relates to the vacuum pressure.展开更多
A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boun...A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume. The progressive waves and the absorbing waves are generated simultaneously at the active wave generating-absorbing boundary. The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures. SIRW method proposed by Frigaard and Brorsen (1995) is used to separate the incident waves and reflected waves. The digital filters are designed based on the surface elevation signals of the two wave gauges. The corrected velocity of the wave-maker paddle is the output from the digital filter in real time. The numerical results of regular and irregular waves by the active absorbing-generating boundary are compared with the numerical results by the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The differences between the initial incident waves and the estimated incident waves are analyzed.展开更多
A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The N...A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The Navier-Stokes equations were discretized with a three-step finite element method that has a third-order accuracy. In the CLEAR-VOF method, the VOF function F was calculated in the Lagrangian manner and allowed the complicated free surface to be accurately captured. The propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated with this model, and the numerical results agreed with experimental data and theoretical solutions. A benchmark test of dam-collapse flow was also simulated with an unstructured mesh, and the capability of the present model for wave and flow simulations with unstructured meshes, was verified. The results show that the model is effective for numerical simulation of wave and flow problems with both structured and unstructured meshes.展开更多
VOF(Volume of Fluid)方法由于其良好的守恒性和网格适应性,且具有计算资源需求相对较小等优点,成为船舶水动力学领域自由面流动CFD(Computational Fluid Dynamics)模拟的主流方法。但原始的VOF方法存在较为严重的界面扩散问题,导致模...VOF(Volume of Fluid)方法由于其良好的守恒性和网格适应性,且具有计算资源需求相对较小等优点,成为船舶水动力学领域自由面流动CFD(Computational Fluid Dynamics)模拟的主流方法。但原始的VOF方法存在较为严重的界面扩散问题,导致模拟的界面厚度过大、空间分辨率不够,进而影响流场相关变量的计算精度,这一问题在非定常自由面流动模拟中尤为明显。本文针对上述问题,通过在VOF控制方程中引入人工对流项以达到抑制界面扩散、压缩界面厚度的目的,并采用隐式离散人工对流项的方式提高计算稳定性,形成了反扩散VOF算法。经Zalesak和剪切场等经典算例在不同数量网格下的测试验证,表明反扩散VOF算法能够大幅压缩界面厚度,同时明显减小质量误差。随后的三维无障碍溃坝算例和破舱进水算例,进一步证明了反扩散VOF算法在实际非定常流动模拟中能够更好地捕捉自由面并提高计算精度。展开更多
The volume of fluid method (VOF method) for numerical simulations describing wave run-up on a sloping structure including the overturning. breaking and merging phenomena is presented. The flow motions are governed by ...The volume of fluid method (VOF method) for numerical simulations describing wave run-up on a sloping structure including the overturning. breaking and merging phenomena is presented. The flow motions are governed by the classical, two-dimensional Navier-Stokes equation for incompressible fluid. Computational results concerning the time evolution of the free surface and pressure distribution along water bed and slope boundary are given, showing how an initial solitary wave undergoes run-up, overturning, breaking and merging on the slope. It is found that most of the wave energy is lost after the wave breaking and merging.展开更多
二氧化碳(CO_(2))捕集与封存技术有利于减少CO_(2)的排放量,近年来针对CO_(2)地质封存形成了从纳米尺度到油气藏尺度的大量研究成果,大多数研究只针对单一维度多孔介质中流动行为开展研究,且物理实验方法受许多不确定性因素影响,十分耗...二氧化碳(CO_(2))捕集与封存技术有利于减少CO_(2)的排放量,近年来针对CO_(2)地质封存形成了从纳米尺度到油气藏尺度的大量研究成果,大多数研究只针对单一维度多孔介质中流动行为开展研究,且物理实验方法受许多不确定性因素影响,十分耗费时间和成本。为了从微观角度深入理解CO_(2)地质封存过程中的渗流行为,提高CO_(2)地质埋存量,基于追踪两相界面动态变化的VOF(Volume of Fluid)方法,分别建立了2D和3D模型,开展了超临界CO_(2)-水两相流动数值模拟研究,对比了不同润湿性、毛细管数、黏度比条件下的CO_(2)团簇分布特征、CO_(2)饱和度变化规律,揭示了孔隙尺度CO_(2)埋存的内在机理。研究结果表明:①随着岩石对CO_(2)润湿性增加,CO_(2)波及范围扩大,同时CO_(2)团簇的卡断频率减少,CO_(2)埋存量增加;②随着毛细管数的增加,驱替模式由毛细指进转变为稳定驱替,CO_(2)埋存量增加;③随着注入超临界CO_(2)黏度逐渐接近水的黏度,两相流体之间的流动阻力降低,促进了“润滑效应”,CO_(2)相的渗流能力提高,CO_(2)埋存量增加;④润湿性、毛细管数、黏度比在不同维度多孔介质模型中对CO_(2)饱和度的影响程度不同。结论认为,基于VOF方法的CO_(2)-水两相渗流模拟研究在孔隙尺度上揭示了CO_(2)地质封存过程中的渗流机理,对CCUS技术的发展有指导意义,也为更大尺度的CO_(2)地质封存研究提供了理论指导和技术支撑。展开更多
A new coupling numerical wave model, based on both the Boundary Element Method (BEM) and the Volume Of Fluid (VOF) method, is established by taking advantages of the both methods to solve the wave-structure intera...A new coupling numerical wave model, based on both the Boundary Element Method (BEM) and the Volume Of Fluid (VOF) method, is established by taking advantages of the both methods to solve the wave-structure interaction problems. In this model, the wave transformation in front of structures is calculated by the 0-1 type BEM, and the intense wave motions near the structures are calculated by the VOF method. In this paper, the characteristics of the BEM and the VOF method are discussed first, and then the coupling treatments are described in detail. In the end, the accuracy and the validity of the coupling model are examined by comparing the numerical results with experiment results and other numerical results available for the interactions between regular waves with a monolayer horizontal plate.展开更多
A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions...A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions are possible in 2D cases, and the interface can be reconstructed by only requiring the known local volume fraction information. On the other hand, the fluid-occupying-length is defined on each side of the stencil, through which a unified fluid-occupying volume model and a unified algorithm can be obtained to solve the interface advection equation. The method is suitable for the arbitrary geometry of the grid cell, and is extendible to 3D cases. Typical numerical examples show that the current method can give "sharp" results for tracking free interface.展开更多
为研究环下润滑结构内部油膜迁移及流动特性,针对轴心射流收油环采用VOF (Volume of fluid)方法开展了数值计算,获得了收油环端面油膜动态形成过程,在分析流场特征的基础上,讨论了收油环运转工况及结构参数对内部油膜形态、滑油体积分...为研究环下润滑结构内部油膜迁移及流动特性,针对轴心射流收油环采用VOF (Volume of fluid)方法开展了数值计算,获得了收油环端面油膜动态形成过程,在分析流场特征的基础上,讨论了收油环运转工况及结构参数对内部油膜形态、滑油体积分数、油膜速度和供油孔输油能力的影响规律。结果表明:收油环端面油膜呈圆盘状迁移,边缘破碎形成油滴、油带甩至侧壁面,在供油孔内以“月牙形”分布加速流动,收油环端面油膜厚度随主轴转速增大而减小,随喷嘴流量上升而增加;提高转速降低了供油孔内滑油含量,使孔内油膜加速流动,孔内滑油含量随喷嘴流量的上升而增大,随供油孔径的增加而下降;喷嘴流量与供油孔径的改变对孔内流速影响较小;增加孔径与提高收油环转速可加强供油孔输运能力,8 kr/min下提高喷嘴流量使无量纲输油量Cq平均降低了40.71%,提高孔径使Cq最大提高了57.14%,转速的增加使Cq平均增加25.87%。展开更多
基金The National Natural Science Foundation of China under contract No.51279023the Public Science and Technology Research Funds Projects of Ocean under contract No.201205023+1 种基金the Special Funds for Postdoctoral Innovative Projects of Liaoning Province of China under contract No.2011921018the Special Funds for Talent Projects of Dalian Ocean University under contract No.SYYJ2011004
文摘A vertical two-dimensional numerical model has been applied to solving the Reynolds Averaged Navier- Stokes (RANS} equations in the simulation of current and wave propagation through vegetated and non- vegetated waters. The k-e model is used for turbulence closure of RANS equations. The effect of vegeta- tion is simulated by adding the drag force of vegetation in the flow momentum equations and turbulence model. To solve the modified N-S equations, the finite difference method is used with the staggered grid system to solver equations. The Youngs' fractional volume of fluid (VOF) is applied tracking the free sur- face with second-order accuracy. The model has been tested by simulating dam break wave, pure current with vegetation, solitary wave runup on vegetated and non-vegetated channel, regular and random waves over a vegetated field. The model reasonably well reproduces these experimental observations, the model- ing approach presented herein should be useful in simulating nearshore processes in coastal domains with vegetation effects.
文摘This is a numerical study of a falling droplet surrounding by air under the electric field modeled with finite volume method by means of CFD.The VOF method has been employed to model the two-phase flow of the present study.Various capillary numbers are investigated to analyze the effects of electric field intensity on the falling droplet deformation.Also,the effects of electric potential on the heat transfer coefficient have been examined.The obtained results showed that by applying the electric field at a capillary number of 0.2 the droplet tends to retain its primitive shape as time goes by,with a subtle deformation to an oblate form.Intensifying the electric field to a capillary number of 0.8 droplet deformation is almost insignificantwith time progressing;however,further enhancement in capillary number to 2 causes the droplet to deform as a prolate shape and higher values of this number intensify the prolate form deformation of the droplet and result in pinch-off phenomenon.Ultimately,it is showed that as the electric potential augments the heat transfer coefficient increases in which for electric potential values higher than 2400 V the heat transfer coefficient enhances significantly.
基金Supported by National Key R&D Program of China(Grant No.2016YFC0300502)the National Natural Science Foundation of China(Grant Nos.51705145 and 517779092)+1 种基金Scientific Research Fund of Hunan Provincial Education Department(Grant No.18B205)Hunan Province Natural Science Foundation(Grant No.2019 JJ50182).
文摘Sediments in the seabed hold vital clues to the study of marine geology,microbial communities and history of ocean life,and the remote operated vehicle(ROV)mounted tubular sampling is an important way to obtain sediments.However,sampling in the seabed is a particularly difficult and complicated task due to the difficulty accessing deep water layers.The sampling is affected by the sampler’s structural parameters,operation parameters and the interaction between the sampling tube and sediments,which usually results in low volume and coring rate of sediments obtained.This paper simulated the soft viscous seabed sediments as non-Newtonian Herschel-Bulkley viscoplastic fluids and established a numerical model for the tubular sampling based on the volume of fluid(VOF)method.The influence rules of the sampling tube diameter,drainage area rate,penetration velocity,and sediments dynamic viscosity on coring rate and volume were studied.The results showed that coring volume was negatively correlated with all the parameters except the sampling tube diameter.Furthermore,coring rate decreased with increases in penetration velocity,drainage area rate,and sediments dynamic viscosity.The coring rate first increased and then decreased with increasing of the sampling tube diameter,and the peak value was also influenced by penetration velocity.Then,based on the numerical simulation results,an experimental sampling platform was set up and real-world sampling experiments were conducted.The simulation results tallied with the experimental results,with a maximum absolute error of only 4.6%,which verified that the numerical simulation model accurately reflected real-world sampling.The findings in this paper can provide a theoretical basis for facilitating the optimal design of the geometric structure of the seabed sediments samplers and the parameters in the sampling process.
基金the National Science Foundation of China(No.11672271)Shenzhen Zhaowei Machinery&Electronics CO.,LTD.(No.20210035A and 20210035B)for this research work are gratefully acknowledged.
文摘Jetting succeeded by accumulation is the characteristic of the vacuum filling,which is different from the conventional pressure-driven flow.In order to simulate this kind of flow,a three-dimensional theoretical model in terms of incompressible and viscous flow is established,and an iterative method combined with finite element method(FEM)is proposed to solve the flow problem.The Lagranian-VOF method is constructed to trace the jetting and accumulated flow fronts.Based on the proposed model and algorithm,a simulation program is developed to predict the velocity,pressure,temperature,and advancement progress.To validate the model and algorithm,a visual experimental equipment for vacuum filling is designed and construted.The vacuum filling experiments with different viscous materials and negative pressures were conducted and compared with the corresponding simulations.The results show the flow front shape closely depends on the fluid viscosity and less relates to the vacuum pressure.
基金supported by the‘New Century Outstanding Talent’Scheme of the Ministry of Education of China(Grant No.NCET-07-0135)
文摘A numerical irregular wave flume with active absorption of re-reflected waves is simulated by use of volume of fluid (VOF) method. An active 'absorbing wave-maker based on linear wave theory is set on the left boundary of the wave flume. The progressive waves and the absorbing waves are generated simultaneously at the active wave generating-absorbing boundary. The absorbing waves are generated to eliminate the waves coming back to the generating boundary due to reflection from the outflow boundary and the structures. SIRW method proposed by Frigaard and Brorsen (1995) is used to separate the incident waves and reflected waves. The digital filters are designed based on the surface elevation signals of the two wave gauges. The corrected velocity of the wave-maker paddle is the output from the digital filter in real time. The numerical results of regular and irregular waves by the active absorbing-generating boundary are compared with the numerical results by the ordinary generating boundary to verify the performance of the active absorbing-generator boundary. The differences between the initial incident waves and the estimated incident waves are analyzed.
基金supported by the National Natural Science Foundation of China (Grant No. 50679008)
文摘A two-dimensional numerical model based on the Navier-Stokes equations and computational Lagrangian-Eulerian advection remap-volume of fluid (CLEAR-VOF) method was developed to simulate wave and flow problems. The Navier-Stokes equations were discretized with a three-step finite element method that has a third-order accuracy. In the CLEAR-VOF method, the VOF function F was calculated in the Lagrangian manner and allowed the complicated free surface to be accurately captured. The propagation of regular waves and solitary waves over a flat bottom, and shoaling and breaking of solitary waves on two different slopes were simulated with this model, and the numerical results agreed with experimental data and theoretical solutions. A benchmark test of dam-collapse flow was also simulated with an unstructured mesh, and the capability of the present model for wave and flow simulations with unstructured meshes, was verified. The results show that the model is effective for numerical simulation of wave and flow problems with both structured and unstructured meshes.
文摘VOF(Volume of Fluid)方法由于其良好的守恒性和网格适应性,且具有计算资源需求相对较小等优点,成为船舶水动力学领域自由面流动CFD(Computational Fluid Dynamics)模拟的主流方法。但原始的VOF方法存在较为严重的界面扩散问题,导致模拟的界面厚度过大、空间分辨率不够,进而影响流场相关变量的计算精度,这一问题在非定常自由面流动模拟中尤为明显。本文针对上述问题,通过在VOF控制方程中引入人工对流项以达到抑制界面扩散、压缩界面厚度的目的,并采用隐式离散人工对流项的方式提高计算稳定性,形成了反扩散VOF算法。经Zalesak和剪切场等经典算例在不同数量网格下的测试验证,表明反扩散VOF算法能够大幅压缩界面厚度,同时明显减小质量误差。随后的三维无障碍溃坝算例和破舱进水算例,进一步证明了反扩散VOF算法在实际非定常流动模拟中能够更好地捕捉自由面并提高计算精度。
文摘The volume of fluid method (VOF method) for numerical simulations describing wave run-up on a sloping structure including the overturning. breaking and merging phenomena is presented. The flow motions are governed by the classical, two-dimensional Navier-Stokes equation for incompressible fluid. Computational results concerning the time evolution of the free surface and pressure distribution along water bed and slope boundary are given, showing how an initial solitary wave undergoes run-up, overturning, breaking and merging on the slope. It is found that most of the wave energy is lost after the wave breaking and merging.
文摘二氧化碳(CO_(2))捕集与封存技术有利于减少CO_(2)的排放量,近年来针对CO_(2)地质封存形成了从纳米尺度到油气藏尺度的大量研究成果,大多数研究只针对单一维度多孔介质中流动行为开展研究,且物理实验方法受许多不确定性因素影响,十分耗费时间和成本。为了从微观角度深入理解CO_(2)地质封存过程中的渗流行为,提高CO_(2)地质埋存量,基于追踪两相界面动态变化的VOF(Volume of Fluid)方法,分别建立了2D和3D模型,开展了超临界CO_(2)-水两相流动数值模拟研究,对比了不同润湿性、毛细管数、黏度比条件下的CO_(2)团簇分布特征、CO_(2)饱和度变化规律,揭示了孔隙尺度CO_(2)埋存的内在机理。研究结果表明:①随着岩石对CO_(2)润湿性增加,CO_(2)波及范围扩大,同时CO_(2)团簇的卡断频率减少,CO_(2)埋存量增加;②随着毛细管数的增加,驱替模式由毛细指进转变为稳定驱替,CO_(2)埋存量增加;③随着注入超临界CO_(2)黏度逐渐接近水的黏度,两相流体之间的流动阻力降低,促进了“润滑效应”,CO_(2)相的渗流能力提高,CO_(2)埋存量增加;④润湿性、毛细管数、黏度比在不同维度多孔介质模型中对CO_(2)饱和度的影响程度不同。结论认为,基于VOF方法的CO_(2)-水两相渗流模拟研究在孔隙尺度上揭示了CO_(2)地质封存过程中的渗流机理,对CCUS技术的发展有指导意义,也为更大尺度的CO_(2)地质封存研究提供了理论指导和技术支撑。
基金the National Natural Science Foundation of China ( Grant No. 50921001)the Foundation of State Key Laboratory of Coastal and Offshore Engineering, Dalian University on Technology (Grant No. LP0804)
文摘A new coupling numerical wave model, based on both the Boundary Element Method (BEM) and the Volume Of Fluid (VOF) method, is established by taking advantages of the both methods to solve the wave-structure interaction problems. In this model, the wave transformation in front of structures is calculated by the 0-1 type BEM, and the intense wave motions near the structures are calculated by the VOF method. In this paper, the characteristics of the BEM and the VOF method are discussed first, and then the coupling treatments are described in detail. In the end, the accuracy and the validity of the coupling model are examined by comparing the numerical results with experiment results and other numerical results available for the interactions between regular waves with a monolayer horizontal plate.
基金Project supported by the National Natural Science Foundation of China (No.10672097)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘A stencil-like volume of fluid (VOF) method is proposed for tracking free interface. A stencil on a grid cell is worked out according to the normal direction of the interface, in which only three interface positions are possible in 2D cases, and the interface can be reconstructed by only requiring the known local volume fraction information. On the other hand, the fluid-occupying-length is defined on each side of the stencil, through which a unified fluid-occupying volume model and a unified algorithm can be obtained to solve the interface advection equation. The method is suitable for the arbitrary geometry of the grid cell, and is extendible to 3D cases. Typical numerical examples show that the current method can give "sharp" results for tracking free interface.
文摘为研究环下润滑结构内部油膜迁移及流动特性,针对轴心射流收油环采用VOF (Volume of fluid)方法开展了数值计算,获得了收油环端面油膜动态形成过程,在分析流场特征的基础上,讨论了收油环运转工况及结构参数对内部油膜形态、滑油体积分数、油膜速度和供油孔输油能力的影响规律。结果表明:收油环端面油膜呈圆盘状迁移,边缘破碎形成油滴、油带甩至侧壁面,在供油孔内以“月牙形”分布加速流动,收油环端面油膜厚度随主轴转速增大而减小,随喷嘴流量上升而增加;提高转速降低了供油孔内滑油含量,使孔内油膜加速流动,孔内滑油含量随喷嘴流量的上升而增大,随供油孔径的增加而下降;喷嘴流量与供油孔径的改变对孔内流速影响较小;增加孔径与提高收油环转速可加强供油孔输运能力,8 kr/min下提高喷嘴流量使无量纲输油量Cq平均降低了40.71%,提高孔径使Cq最大提高了57.14%,转速的增加使Cq平均增加25.87%。