Ammoxidation of 3,4\|dichlorotoluene(DCT) to prepare 3,4\|dichlorobenzonitrile (DCBN) over silica supported vanadium phosphorus oxide catalysts has been studied. On the VPO/SiO 2 catalyst, the influence of the re...Ammoxidation of 3,4\|dichlorotoluene(DCT) to prepare 3,4\|dichlorobenzonitrile (DCBN) over silica supported vanadium phosphorus oxide catalysts has been studied. On the VPO/SiO 2 catalyst, the influence of the reaction temperature, the molar ratio of air/DCT, the molar ratio of NH 3 /DCT in the feed gas and the space velocity ( v s) on the conversion, yield and selectivity was observed. The most appropriate reaction condition is: reaction T =673 K, n (DCT)∶ n (NH 3 )∶ n (air)=1∶7∶30 and v s=250 h -1 . At this optimum reaction condition, the conversion of DCT is 97.8%; the molar yield of DCBN is 67.4%. It was found that the addition of element phosphorus can improve the yield of DCBN compared with VO/SiO 2 catalyst.展开更多
A series of vanadium phosphate oxide(VPO) catalysts supported on silica(VPO/Si O2) with various mole ratios of V/P(nV:nP=1:0.8-1:3) were prepared through impregnation method. The catalytic activity was evaluated by am...A series of vanadium phosphate oxide(VPO) catalysts supported on silica(VPO/Si O2) with various mole ratios of V/P(nV:nP=1:0.8-1:3) were prepared through impregnation method. The catalytic activity was evaluated by ammoxidation reactions of several kinds of chloro-substituted toluenes(CT) in a fixed-bed reactor. The catalyst presented the best performance when nV:nP is 1:1.6. The prepared catalysts were characterized by N2 adsorption, hydrogen temperature programmed reduction(TPR) and ammonia temperature programmed desorption(TPD) and etc. The results reveal that P can decrease the bonding energy of V=O and increase the mobility of lattice oxygen which was beneficial for the improvement of the catalysts, while too much P can greatly decrease the average oxidation number of V which leads to deactivation of the catalysts. The surface acidity of the VPO/Si O2 catalysts is affected by nV:nP and the catalyst had the highest surface acidity when nV:nP is 1:1.6. The selectivity of catalysts is proportional to the surface acidity when nV:nP is lower than 1:3.0.展开更多
The ammoxidation of substituted toluenes to their corresponding nitriles over silica-supported vanadium phosphorus oxide (VPO/SiO2) catalysts has been studied. the effects of carrier silica, the addition of phosphorus...The ammoxidation of substituted toluenes to their corresponding nitriles over silica-supported vanadium phosphorus oxide (VPO/SiO2) catalysts has been studied. the effects of carrier silica, the addition of phosphorus, the substituents and the loadings have been discussed. Compared with unsupported VPO, the VPO/SiO2 catalysts have higher catalytic activity for ammoxidation of substituted toluenes and much lower reaction temperature. XRD shows that vanadium phosphorus oxides exist as amorphous phase and disperse to a high degree on the silica surface in 10%loading catalyst. When the loadings are over 10%, the crystalline α-VOPO4 would emerge, which would decrease the yield and selectivity. Additional phosphorus can form composite oxides with vanadia and play concerted catalytic function, which increase the selectivity of nitriles remarkably. Different substituents or same substituents on different positions have different influences because of the variant electronic stability of intermediates, the hindered accessibility of methyl group or the chemisorption state of the substrate molecule on the electrophilic catalyst surface.展开更多
文摘Ammoxidation of 3,4\|dichlorotoluene(DCT) to prepare 3,4\|dichlorobenzonitrile (DCBN) over silica supported vanadium phosphorus oxide catalysts has been studied. On the VPO/SiO 2 catalyst, the influence of the reaction temperature, the molar ratio of air/DCT, the molar ratio of NH 3 /DCT in the feed gas and the space velocity ( v s) on the conversion, yield and selectivity was observed. The most appropriate reaction condition is: reaction T =673 K, n (DCT)∶ n (NH 3 )∶ n (air)=1∶7∶30 and v s=250 h -1 . At this optimum reaction condition, the conversion of DCT is 97.8%; the molar yield of DCBN is 67.4%. It was found that the addition of element phosphorus can improve the yield of DCBN compared with VO/SiO 2 catalyst.
基金Supported by the National Natural Science Foundation of China(51572201)
文摘A series of vanadium phosphate oxide(VPO) catalysts supported on silica(VPO/Si O2) with various mole ratios of V/P(nV:nP=1:0.8-1:3) were prepared through impregnation method. The catalytic activity was evaluated by ammoxidation reactions of several kinds of chloro-substituted toluenes(CT) in a fixed-bed reactor. The catalyst presented the best performance when nV:nP is 1:1.6. The prepared catalysts were characterized by N2 adsorption, hydrogen temperature programmed reduction(TPR) and ammonia temperature programmed desorption(TPD) and etc. The results reveal that P can decrease the bonding energy of V=O and increase the mobility of lattice oxygen which was beneficial for the improvement of the catalysts, while too much P can greatly decrease the average oxidation number of V which leads to deactivation of the catalysts. The surface acidity of the VPO/Si O2 catalysts is affected by nV:nP and the catalyst had the highest surface acidity when nV:nP is 1:1.6. The selectivity of catalysts is proportional to the surface acidity when nV:nP is lower than 1:3.0.
文摘The ammoxidation of substituted toluenes to their corresponding nitriles over silica-supported vanadium phosphorus oxide (VPO/SiO2) catalysts has been studied. the effects of carrier silica, the addition of phosphorus, the substituents and the loadings have been discussed. Compared with unsupported VPO, the VPO/SiO2 catalysts have higher catalytic activity for ammoxidation of substituted toluenes and much lower reaction temperature. XRD shows that vanadium phosphorus oxides exist as amorphous phase and disperse to a high degree on the silica surface in 10%loading catalyst. When the loadings are over 10%, the crystalline α-VOPO4 would emerge, which would decrease the yield and selectivity. Additional phosphorus can form composite oxides with vanadia and play concerted catalytic function, which increase the selectivity of nitriles remarkably. Different substituents or same substituents on different positions have different influences because of the variant electronic stability of intermediates, the hindered accessibility of methyl group or the chemisorption state of the substrate molecule on the electrophilic catalyst surface.