为了研究VSM沉井井壁受力变化规律,结合施工工艺特点对VSM沉井的下沉过程及受力特性进行了分析。首先,依据VSM沉井下沉特点对其施工过程中所受荷载进行梳理,同时划分了沉井一个下沉循环中的典型运动状态;之后以G. G. Meyerhoff公式和规...为了研究VSM沉井井壁受力变化规律,结合施工工艺特点对VSM沉井的下沉过程及受力特性进行了分析。首先,依据VSM沉井下沉特点对其施工过程中所受荷载进行梳理,同时划分了沉井一个下沉循环中的典型运动状态;之后以G. G. Meyerhoff公式和规范为基础,对沉井下沉阻力进行分析计算,提出了考虑井内淹水的刃脚端阻力计算公式,并建立了井壁典型状态施工力学模型;最后,以矿山竖井工程为算例计算得出沉井几何参数、下沉阻力、下沉深度以及悬吊力之间的关系。结果表明:VSM沉井悬吊力大小随着下沉深度的增加并不是一直增大的,而是先增大后减小,存在极大值;井壁厚度直接影响着刃脚端阻力大小和侧壁摩阻力变化规律,进而间接影响沉井的下沉深度;沉井悬吊力大小随着施工条件的变化而变化,对于沉井设备悬吊能力的设计应根据实际情况进行综合考虑;对于内径6m,厚度0.5m的矿山沉井井壁,在f=8kPa条件下,其最大下沉深度为56m;根据下沉深度设计减阻泥浆性能是控制下沉阻力、实现系统优化的重要手段。展开更多
文摘为了研究VSM沉井井壁受力变化规律,结合施工工艺特点对VSM沉井的下沉过程及受力特性进行了分析。首先,依据VSM沉井下沉特点对其施工过程中所受荷载进行梳理,同时划分了沉井一个下沉循环中的典型运动状态;之后以G. G. Meyerhoff公式和规范为基础,对沉井下沉阻力进行分析计算,提出了考虑井内淹水的刃脚端阻力计算公式,并建立了井壁典型状态施工力学模型;最后,以矿山竖井工程为算例计算得出沉井几何参数、下沉阻力、下沉深度以及悬吊力之间的关系。结果表明:VSM沉井悬吊力大小随着下沉深度的增加并不是一直增大的,而是先增大后减小,存在极大值;井壁厚度直接影响着刃脚端阻力大小和侧壁摩阻力变化规律,进而间接影响沉井的下沉深度;沉井悬吊力大小随着施工条件的变化而变化,对于沉井设备悬吊能力的设计应根据实际情况进行综合考虑;对于内径6m,厚度0.5m的矿山沉井井壁,在f=8kPa条件下,其最大下沉深度为56m;根据下沉深度设计减阻泥浆性能是控制下沉阻力、实现系统优化的重要手段。