An improved method of generating angle-domain common-image gathers(ADCIGs) by VSP reverse time migration(RTM) is introduced in this paper.The formula which is used to compute the receiver wavefield for VSP RTM is ...An improved method of generating angle-domain common-image gathers(ADCIGs) by VSP reverse time migration(RTM) is introduced in this paper.The formula which is used to compute the receiver wavefield for VSP RTM is modified by adding an amplitude correction term in order to conveniently output amplitude-preserved ADCIGs.Compared with the surface seismic data,VSP data contains much richer wavefields.However,the direct and downgoing waves can bring about serious imaging artifacts in ADCIGs,especially the direct wave.The feasibility and validity of this method is demonstrated by both numerical and real VSP data from western China.Thus,the ADCIGs from this method can provide reliable basic data for VSP migration velocity analysis,VSP AVO/AVA analysis,and inversion.展开更多
In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new exp...In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.展开更多
Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoi...Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.展开更多
Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propos...Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propose combining traveltime tomography and prestack depth migration for VSP of an angle-domain walkaway,in a bid to establish accurate two-dimensional and three-dimensional(3 D)velocity models.First,residual curvature was defined to update velocity,and an accurate velocity field was established.To establish a high-precision velocity model,we deduced the relationship between the residual depth and traveltime of common imaging gathers(CIGs)in walkaway VSP.Solving renewal velocity using the least squares method,a four-parameter tomographic inversion equation was derived comprising formation dip angle,incidence angle,residual depth,and sensitivity matrix.In the angle domain,the reflected wave was divided into up-and down-transmitted waves and their traveltimes were calculated.The systematic cumulative method was employed in prestack depth migration of a complex surface.Through prestack depth migration,the offset-domain CIGs were obtained,and dip angle was established by defining the stack section horizon.Runge–Kutta ray tracing was employed to calculate the ray path from the reflection point to the detection point,to determine the incident angle,and to subsequently calculate the ray path from the reflection point to the irregular surface.The offset-domain residual depths were mapped to the angle domain,and a new tomographic equation was established and solved.Application in the double complex area of the Tarim Basin showed the four-parameter tomographic inversion equation derived in this paper to be both correct and practical and that the migration algorithm was able to adapt to the complex surface.展开更多
基金supported by National Basic Research Program of China (No. 2011CB201100)National Department of Science and Technology (No. 2008ZX05004-006)
文摘An improved method of generating angle-domain common-image gathers(ADCIGs) by VSP reverse time migration(RTM) is introduced in this paper.The formula which is used to compute the receiver wavefield for VSP RTM is modified by adding an amplitude correction term in order to conveniently output amplitude-preserved ADCIGs.Compared with the surface seismic data,VSP data contains much richer wavefields.However,the direct and downgoing waves can bring about serious imaging artifacts in ADCIGs,especially the direct wave.The feasibility and validity of this method is demonstrated by both numerical and real VSP data from western China.Thus,the ADCIGs from this method can provide reliable basic data for VSP migration velocity analysis,VSP AVO/AVA analysis,and inversion.
基金sponsored by the National Nature Science Foundation of China(Nos.41174114 and 41274128)
文摘In order to obtain stable interval Q factor, by analyzing the spectrum of monitoring wavelet and down-going wavelet of zero-offset VSP data and referring the spectrum expression of Ricker wavelet, we propose a new expression of source wavelet spectrum. Basing on the new expression, we present improved amplitude spectral fitting and spectral ratio methods for interval Q inversion based on zero-offset VSP data, and the sequence for processing the zero-offset VSP data. Subsequently, we apply the proposed methods to real zero-offset VSP data, and carry out prestack inverse Q filtering to zero-offset VSP data and surface seismic data for amplitude compensation with the estimated Q value.
文摘Highly precise acoustic impedance inversion is a key technology for pre-drilling prediction by VSP data. In this paper, based on the facts that VSP data has high resolution, high signal to noise ratio, and the downgoing and upgoing waves can be accurately separated, we propose a method of predicting the impedance below the borehole in front of the bit using VSP data. First, the method of nonlinear iterative inversion is adopted to invert for impedance using the VSP corridor stack. Then, by modifying the damping factor in the iteration and using the preconditioned conjugate gradient method to solve the equations, the stability and convergence of the inversion results can be enhanced. The results of theoretical models and actual data demonstrate that the method is effective for pre-drilling prediction using VSP data.
基金supported by the national project "Geophysical Complex Technologies for Reservoirs and Unconventional Gas Reservoirs"(No.2017 ZX05018-004-003)
文摘Walkaway VSP cannot obtain accurate velocity field,as it asymmetrically reflects ray path and provides uneven coverage to underground target,thereby presenting issues related to imaging quality.In this study,we propose combining traveltime tomography and prestack depth migration for VSP of an angle-domain walkaway,in a bid to establish accurate two-dimensional and three-dimensional(3 D)velocity models.First,residual curvature was defined to update velocity,and an accurate velocity field was established.To establish a high-precision velocity model,we deduced the relationship between the residual depth and traveltime of common imaging gathers(CIGs)in walkaway VSP.Solving renewal velocity using the least squares method,a four-parameter tomographic inversion equation was derived comprising formation dip angle,incidence angle,residual depth,and sensitivity matrix.In the angle domain,the reflected wave was divided into up-and down-transmitted waves and their traveltimes were calculated.The systematic cumulative method was employed in prestack depth migration of a complex surface.Through prestack depth migration,the offset-domain CIGs were obtained,and dip angle was established by defining the stack section horizon.Runge–Kutta ray tracing was employed to calculate the ray path from the reflection point to the detection point,to determine the incident angle,and to subsequently calculate the ray path from the reflection point to the irregular surface.The offset-domain residual depths were mapped to the angle domain,and a new tomographic equation was established and solved.Application in the double complex area of the Tarim Basin showed the four-parameter tomographic inversion equation derived in this paper to be both correct and practical and that the migration algorithm was able to adapt to the complex surface.