The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the ...The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the fundamental limitations of the narrowband SNIM technique for the broadband application, the authors present a broadband SNIM LNA systematic design technique. The designed LNA guided by the proposed methodology achieves 10 dB power gain with a low Noise Figure of 0.53 dB. Meanwhile, it provides wonderful input matching of 27 dB across the fre-quency range of 3~5 GHz. Therefore, broadband SNIM is realized.展开更多
Nowadays, microwave frequency systems, in many applications are used. Regardless of the application, all microwave communication systems are faced with transmission line matching problem, related to the load or impeda...Nowadays, microwave frequency systems, in many applications are used. Regardless of the application, all microwave communication systems are faced with transmission line matching problem, related to the load or impedance connected to them. The mismatching of microwave lines with the load connected to them generates reflected waves. Mismatching is identified by a parameter known as VSWR (Voltage Standing Wave Ratio). VSWR is a crucial parameter on determining the efficiency of microwave systems. In medical application VSWR gets a specific importance. The presence of reflected waves can lead to the wrong measurement information, consequently a wrong diagnostic result interpretation applied to a specific patient. For this reason, specifically in medical applications, it is important to minimize the reflected waves, or control the VSWR value with the high accuracy level. In this paper, the transmission line under different matching conditions is simulated and experimented. Through simulation and experimental measurements, the VSWR for each case of connected line with the respective load is calculated and measured. Further elements either with impact or not on the VSWR value are identified. Interpretation of simulation and experimental results allows to judge about improving the VSWR, and consequently increasing the microwave transmission systems efficiency.展开更多
文摘The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the fundamental limitations of the narrowband SNIM technique for the broadband application, the authors present a broadband SNIM LNA systematic design technique. The designed LNA guided by the proposed methodology achieves 10 dB power gain with a low Noise Figure of 0.53 dB. Meanwhile, it provides wonderful input matching of 27 dB across the fre-quency range of 3~5 GHz. Therefore, broadband SNIM is realized.
文摘Nowadays, microwave frequency systems, in many applications are used. Regardless of the application, all microwave communication systems are faced with transmission line matching problem, related to the load or impedance connected to them. The mismatching of microwave lines with the load connected to them generates reflected waves. Mismatching is identified by a parameter known as VSWR (Voltage Standing Wave Ratio). VSWR is a crucial parameter on determining the efficiency of microwave systems. In medical application VSWR gets a specific importance. The presence of reflected waves can lead to the wrong measurement information, consequently a wrong diagnostic result interpretation applied to a specific patient. For this reason, specifically in medical applications, it is important to minimize the reflected waves, or control the VSWR value with the high accuracy level. In this paper, the transmission line under different matching conditions is simulated and experimented. Through simulation and experimental measurements, the VSWR for each case of connected line with the respective load is calculated and measured. Further elements either with impact or not on the VSWR value are identified. Interpretation of simulation and experimental results allows to judge about improving the VSWR, and consequently increasing the microwave transmission systems efficiency.