Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable succes...Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.展开更多
Vanadium sulfide was first employed as a cathode for all-solid-state lithium-ion batteries and demonstrated superior compatibility with the solid electrolyte, in which the interface between the electrode and solid ele...Vanadium sulfide was first employed as a cathode for all-solid-state lithium-ion batteries and demonstrated superior compatibility with the solid electrolyte, in which the interface between the electrode and solid electrolyte has been optimized. Consequently, it can exhibit excellent electrochemical performance in the voltage range of 1.5–3.5 V. Moreover, the ex-situ X-ray photoelectron spectroscopy measurements reveal the incomplete conversion mechanism to account for the superior electrochemical performance. Specifically, the electrode of VS_(2) exhibits a large capacity of 268.1 mA h g^(-1) at 50 mA g^(-1)(rate performance). At a current density of 100 mA g^(-1), a large reversible capacity of 215 mA h g^(-1) can be maintained after 100 cycles,indicating extraordinary cycling stability, making it a promising electrode for high energy density all-solid-state lithium-ion batteries.展开更多
Although VB-Group transition metal disulfides(TMDs)VS_(2)nanomaterials with specific electronic properties and multiphase microstructures have shown fascinating potential in the field of electro-magnetic wave(EMW)abso...Although VB-Group transition metal disulfides(TMDs)VS_(2)nanomaterials with specific electronic properties and multiphase microstructures have shown fascinating potential in the field of electro-magnetic wave(EMW)absorption,the efficient utilization of VS_(2)is limited by the technical bottleneck of its narrow effective absorption bandwidth(EAB)which is attributed to environmental instability and a deficient electromagnetic(EM)loss mechanism.In order to fully exploit the maximal utilization values of VS_(2)nanomaterials for EMW absorption through mitigating the chemical instability and optimizing the EM parameters,biomass-based glucose derived carbon(GDC)like sugar-coating has been decorated on the surface of stacked VS_(2)nanosheets via a facile hydrothermal method,followed by high-temperature carbonization.As a result,the modulation of doping amount of glucose injection solution(Glucose)could effectively manipulate the encapsulation degree of GDC coating on VS_(2)nanosheets,further imple-menting the EM response mechanisms of the VS_(2)/GDC hybrids(coupling effect of conductive loss,interfacial polarization,relaxation,dipole polarization,defect engineering and multiple reflections and absorptions)through regulating the conductivity and constructing multi-interface heterostructures,as reflected by the enhanced EMW absorption performance to a great extent.The minimum reflection loss(Rmin)of VS_(2)/GDC hybrids could reach52.8 dB with a thickness of 2.7 mm at 12.2 GHz.Surprisingly,compared with pristine VS_(2),the EAB of the VS_(2)/GDC hybrids increased from 2.0 to 5.7 GHz,while their environmental stability was effectively enhanced by virtue of GDC doping.Obviously,this work provides a promising candidate to realize frequency band tunability of EMW absorbers with exceptional perfor-mance and environmental stability.展开更多
VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).However,due to large radius of Na+and K+,the limited interlayer s...VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).However,due to large radius of Na+and K+,the limited interlayer spacing(0.57 nm)of VS2 generally determines high ion diffusion barrier and large volume variation,resulting in unsatisfactory electrochemical performance of SIBs and PIBs.In this work,flower-like VS_(2)/N-doped carbon(VS_(2)/N-C)with expanded(001)plane is grown on reduced graphene oxide(rGO)via a solvothermal and subsequently carbonization strategy.In the VS_(2)/N-C@rGO nanohybrids,the ultrathin VS2"petals"are alternately intercalated by the N-doped porous carbon monolayers to achieve an expanded interlayer spacing(1.02 nm),which can effectively reduce ions diffusion barrier,expose abundant active sites for Na+/K+intercalation,and tolerate large volume variation.The N-C and rGO carbonous materials can significantly promote the electrical conductivity and structural stability.Benefited from the synergistic effect,the VS2/N-C@rGO electrode exhibits large reversible capacity(Na+:407 mAh·g^(-1) at 1 A·g^(-1);K^(+):334 mAh·g^(-1) at 0.2 A·g^(-1)),high rate capacity(Na+:273 mAh·g^(-1) at 8 A·g^(-1);K+:186 mAh·g^(-1) at 5 A·g^(-1)),and remarkable cycling stability(Na+:316 mAh·g^(-1) at 2 A·g^(-1) after 1,400 cycles;K^(+):216 mAh·g^(-1) at 1 A·g^(-1) after 500 cycles).展开更多
文摘Portable and furnished electronics appliances demand power efficient energy storage devices where electrochemical supercapacitors gain much more attention.In this concern,a simple,low-cost and industry scalable successive ionic layer adsorption and reaction(SILAR)approach has been adopted to deposit nanostructured VS_2onto flexible and light-weight stainless steel(SS)substrate towards supercapacitor application.The nanocrystalline nature with hexagonal crystal structure has been confirmed for VS_2through structural analysis.The VS_2electrode exhibits a maximum specific capacitance of 349 F g^(-1)with a super stable behavior in three-electrode liquid-state configuration.Fabricated flexible symmetric solid-state supercapacitor(FSSC)device using gel electrolyte yields specific power of 1.5 k W kg^(-1)(specific energy of 25.9 Wh kg^(-1))with a widen voltage window of 1.6 V.A red LED has been glown for30 s using the system consisted of two devices in series combination.Furthermore,the system glows a combination of 21 red LEDs network with acronym‘VNIT’,demonstrating commercial exposure.The attribution of device demonstration even under mechanical stress holds great promise towards advanced flexible electronics application.
基金supported by the Project of Science and Technology from Fuzhou City (Grant No. 2021-Y-080)JSPS KAKENHI (Grant Nos. 18H02060,20J12412,16H05967)。
文摘Vanadium sulfide was first employed as a cathode for all-solid-state lithium-ion batteries and demonstrated superior compatibility with the solid electrolyte, in which the interface between the electrode and solid electrolyte has been optimized. Consequently, it can exhibit excellent electrochemical performance in the voltage range of 1.5–3.5 V. Moreover, the ex-situ X-ray photoelectron spectroscopy measurements reveal the incomplete conversion mechanism to account for the superior electrochemical performance. Specifically, the electrode of VS_(2) exhibits a large capacity of 268.1 mA h g^(-1) at 50 mA g^(-1)(rate performance). At a current density of 100 mA g^(-1), a large reversible capacity of 215 mA h g^(-1) can be maintained after 100 cycles,indicating extraordinary cycling stability, making it a promising electrode for high energy density all-solid-state lithium-ion batteries.
基金supported by the National Natural Science Foundation of China(52102368,52072192,51977009)Regional Joint Fund for Basic Research and Applied Basic Research of Guangdong Province(No.2020SA001515110905).
文摘Although VB-Group transition metal disulfides(TMDs)VS_(2)nanomaterials with specific electronic properties and multiphase microstructures have shown fascinating potential in the field of electro-magnetic wave(EMW)absorption,the efficient utilization of VS_(2)is limited by the technical bottleneck of its narrow effective absorption bandwidth(EAB)which is attributed to environmental instability and a deficient electromagnetic(EM)loss mechanism.In order to fully exploit the maximal utilization values of VS_(2)nanomaterials for EMW absorption through mitigating the chemical instability and optimizing the EM parameters,biomass-based glucose derived carbon(GDC)like sugar-coating has been decorated on the surface of stacked VS_(2)nanosheets via a facile hydrothermal method,followed by high-temperature carbonization.As a result,the modulation of doping amount of glucose injection solution(Glucose)could effectively manipulate the encapsulation degree of GDC coating on VS_(2)nanosheets,further imple-menting the EM response mechanisms of the VS_(2)/GDC hybrids(coupling effect of conductive loss,interfacial polarization,relaxation,dipole polarization,defect engineering and multiple reflections and absorptions)through regulating the conductivity and constructing multi-interface heterostructures,as reflected by the enhanced EMW absorption performance to a great extent.The minimum reflection loss(Rmin)of VS_(2)/GDC hybrids could reach52.8 dB with a thickness of 2.7 mm at 12.2 GHz.Surprisingly,compared with pristine VS_(2),the EAB of the VS_(2)/GDC hybrids increased from 2.0 to 5.7 GHz,while their environmental stability was effectively enhanced by virtue of GDC doping.Obviously,this work provides a promising candidate to realize frequency band tunability of EMW absorbers with exceptional perfor-mance and environmental stability.
基金The authors are grateful to the National Key Research and Development Project(No.51890863)the National Natural Science Foundation of China(NSFC,Nos.51872172 and 51972197)+2 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2018MEM010 and ZR2019MEM021)Major Research and Development Program for Public Welfare in Shandong(No.2018GGX102021)Young Scholars Program of Shandong University.
文摘VS2 with natural layered structure and metallic conductivity is a prospective candidate for sodium-ion batteries(SIBs)and potassium-ion batteries(PIBs).However,due to large radius of Na+and K+,the limited interlayer spacing(0.57 nm)of VS2 generally determines high ion diffusion barrier and large volume variation,resulting in unsatisfactory electrochemical performance of SIBs and PIBs.In this work,flower-like VS_(2)/N-doped carbon(VS_(2)/N-C)with expanded(001)plane is grown on reduced graphene oxide(rGO)via a solvothermal and subsequently carbonization strategy.In the VS_(2)/N-C@rGO nanohybrids,the ultrathin VS2"petals"are alternately intercalated by the N-doped porous carbon monolayers to achieve an expanded interlayer spacing(1.02 nm),which can effectively reduce ions diffusion barrier,expose abundant active sites for Na+/K+intercalation,and tolerate large volume variation.The N-C and rGO carbonous materials can significantly promote the electrical conductivity and structural stability.Benefited from the synergistic effect,the VS2/N-C@rGO electrode exhibits large reversible capacity(Na+:407 mAh·g^(-1) at 1 A·g^(-1);K^(+):334 mAh·g^(-1) at 0.2 A·g^(-1)),high rate capacity(Na+:273 mAh·g^(-1) at 8 A·g^(-1);K+:186 mAh·g^(-1) at 5 A·g^(-1)),and remarkable cycling stability(Na+:316 mAh·g^(-1) at 2 A·g^(-1) after 1,400 cycles;K^(+):216 mAh·g^(-1) at 1 A·g^(-1) after 500 cycles).