Tunable coherent radiation of wavelength between 92 nm and 122 nm has been produced in molecular gases of N2, CO, H2 and CH4 by resonant and nonresonant third harmonic generation. Factors with respect to the frequency...Tunable coherent radiation of wavelength between 92 nm and 122 nm has been produced in molecular gases of N2, CO, H2 and CH4 by resonant and nonresonant third harmonic generation. Factors with respect to the frequency conversion efficiency, including the line strength of the nonlinear susceptibility, the density of the media and the phase-matching, are discussed. By analyzing the characteristics of the four-wave mixing spectra in molecular gases, some physical parameters and the population of the energy levels are obtained. This indicates that nonlinear optical frequency conversion process provides a useful method to study the structure and spectra of molecules.展开更多
文摘Tunable coherent radiation of wavelength between 92 nm and 122 nm has been produced in molecular gases of N2, CO, H2 and CH4 by resonant and nonresonant third harmonic generation. Factors with respect to the frequency conversion efficiency, including the line strength of the nonlinear susceptibility, the density of the media and the phase-matching, are discussed. By analyzing the characteristics of the four-wave mixing spectra in molecular gases, some physical parameters and the population of the energy levels are obtained. This indicates that nonlinear optical frequency conversion process provides a useful method to study the structure and spectra of molecules.