SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers ...SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.展开更多
In recent years,a novel PEDOT:PSS/n-Si planar heterojunction solar cell has been extensively studied in the photovoltaic field.Different V_(2)O_(5)-IPA concentrations mixed in PEDOT:PSS samples as hole transport layer...In recent years,a novel PEDOT:PSS/n-Si planar heterojunction solar cell has been extensively studied in the photovoltaic field.Different V_(2)O_(5)-IPA concentrations mixed in PEDOT:PSS samples as hole transport layer were prepared by means of spin coating technique and mechanical mixing of organic and inorganic materials.V_(2)O_(5)was studied for its effects on the surface morphology,chemical composition,and optical transmittance of PEDOT:PSS films.The findings of the study show that the addition of V_(2)O_(5)particles changes the surface morphology of PEDOT:PSS films and promotes its superior ohmic contact with the Si interface.Furthermore,PEDOT:PSS incorporated with V_(2)O_(5)particles that have outstanding optical and semiconductor properties reduces the rate of carrier recombination at the device interface and blocks electron transport to the anode in the fabricated Si-based solar cells.When compared to conventional PEDOT:PSS/Si planar heterojunction solar cells,the fill factor,photoelectric conversion efficiency,open-circuit voltage,and short-circuit current density of the devices prepared in this study can be significantly improved,reaching up to 70.98%,15.17%,652 mV and 32.8 mA/cm^(2),respectively.This research provides a promising and effective method for improving the photoelectric conversion performance of PEDOT:PSS/Si heterojunction solar cells,which enables the application of V_(2)O_(5)in Si solar cells.展开更多
文摘SnO_(2)/Co_(3)O_(4)nanofibers(NFs)are synthesized by using a homopolar electrospinning system with double jets of positive polarity electric fields.The morphology and structure of SnO_(2)/Co_(3)O_(4)hetero-nanofibers are characterized by using field emission scanning electron microscope(FE-SEM),transmission electron microscope(TEM),x-ray diffraction(XRD),and x-ray photoelectron spectrometer(XPS).The analyses of SnO_(2)/Co_(3)O_(4)NFs by EDS and HRTEM show that the cobalt and tin exist on one nanofiber,which is related to the homopolar electrospinning and the crystallization during sintering.As a typical n-type semiconductor,Sn O_(2)has the disadvantages of high optimal operating temperature and poor reproducibility.Comparing with Sn O_(2),the optimal operating temperature of SnO_(2)/Co_(3)O_(4)NFs is reduced from 350℃to 250℃,which may be related to the catalysis of Co_(2)O_(2).The response of SnO_(2)/Co_(3)O_(4)to 100-ppm ethanol at 250℃is 50.9,9 times higher than that of pure Sn O_(2),which may be attributed to the p–n heterojunction between the n-type Sn O_(2)crystalline grain and the p-type Co_(2)O_(2)crystalline grain.The nanoscale p–n heterojunction promotes the electron migration and forms an interface barrier.The synergy effects between Sn O_(2)and Co_(2)O_(2),the crystalline grain p–n heterojunction,the existence of nanofibers and the large specific surface area all jointly contribute to the improved gas sensing performance.
基金supported by the National Natural Science Foundation of China(Grant No.52164050,51762043,61764009,51974143)National Key R&D Program of China(No.2018YFC1901801,No.2018YFC1901805)+1 种基金Major Science and Technology Project of Yunnan Province(202202AB080010,2019ZE00703)Yunnan University“Double First-class”Construction Joint Special Project-major project(202201BF070001-018).
文摘In recent years,a novel PEDOT:PSS/n-Si planar heterojunction solar cell has been extensively studied in the photovoltaic field.Different V_(2)O_(5)-IPA concentrations mixed in PEDOT:PSS samples as hole transport layer were prepared by means of spin coating technique and mechanical mixing of organic and inorganic materials.V_(2)O_(5)was studied for its effects on the surface morphology,chemical composition,and optical transmittance of PEDOT:PSS films.The findings of the study show that the addition of V_(2)O_(5)particles changes the surface morphology of PEDOT:PSS films and promotes its superior ohmic contact with the Si interface.Furthermore,PEDOT:PSS incorporated with V_(2)O_(5)particles that have outstanding optical and semiconductor properties reduces the rate of carrier recombination at the device interface and blocks electron transport to the anode in the fabricated Si-based solar cells.When compared to conventional PEDOT:PSS/Si planar heterojunction solar cells,the fill factor,photoelectric conversion efficiency,open-circuit voltage,and short-circuit current density of the devices prepared in this study can be significantly improved,reaching up to 70.98%,15.17%,652 mV and 32.8 mA/cm^(2),respectively.This research provides a promising and effective method for improving the photoelectric conversion performance of PEDOT:PSS/Si heterojunction solar cells,which enables the application of V_(2)O_(5)in Si solar cells.