This paper investigates methods of value-at-risk (VaR) estimation using extreme value theory (EVT). It compares two different estimation methods, 'two-step subsample bootstrap' based on moment estimation and m...This paper investigates methods of value-at-risk (VaR) estimation using extreme value theory (EVT). It compares two different estimation methods, 'two-step subsample bootstrap' based on moment estimation and maximum likelihood estimation (MLE), according to their theoretical bases and computation procedures. Then, the estimation results are analyzed together with those of normal method and empirical method. The empirical research of foreign exchange data shows that the EVT methods have good characters in estimating VaR under extreme conditions and 'two-step subsample bootstrap' method is preferable to MLE.展开更多
The accuracy and time scale invariance of value-at-risk (VaR) measurement methods for different stock indices and at different confidence levels are tested. Extreme value theory (EVT) is applied to model the extre...The accuracy and time scale invariance of value-at-risk (VaR) measurement methods for different stock indices and at different confidence levels are tested. Extreme value theory (EVT) is applied to model the extreme tail of standardized residual series of daily/weekly indices losses, and parametric and nonparametric methods are used to estimate parameters of the general Pareto distribution (GPD), and dynamic VaR for indices of three stock markets in China. The accuracy and time scale invariance of risk measurement methods through back-testing approach are also examined. Results show that not all the indices accept time scale invariance; there are some differences in accuracy between different indices at various confidence levels. The most powerful dynamic VaR estimation methods are EVT-GJR-Hill at 97.5% level for weekly loss to Shanghai stock market, and EVT-GARCH-MLE (Hill) at 99.0% level for weekly loss to Taiwan and Hong Kong stock markets, respectively.展开更多
This study investigates calendar anomalies: day-of-the-week effect and seasonal effect in the Value-at-Risk (VaR) analysis of stock returns for AAPL during the period of 1995 through 2015. The statistical propertie...This study investigates calendar anomalies: day-of-the-week effect and seasonal effect in the Value-at-Risk (VaR) analysis of stock returns for AAPL during the period of 1995 through 2015. The statistical properties are examined and a comprehensive set of diagnostic checks are made on the two decades of AAPL daily stock returns. Combing the Extreme Value Approach together with a statistical analysis, it is learnt that the lowest VaR occurs on Fridays and Mondays typically. Moreover, high Q4 and Q3 VaR are observed during the test period. These results are valuable for anyone who needs evaluation and forecasts of the risk situation in AAPL. Moreover, this methodology, which is applicable to any other stocks or portfolios, is more realistic and comprehensive than the standard normal distribution based VaR model that is commonly used.展开更多
针对金融收益胖尾分布特征及条件波动率长记忆性特征,运用FIGARCH对条件波动率建模、极值理论(extreme value theory,EVT)对标准收益序列的尾部建模,测度出金融市场动态极值风险,进而运用返回测试(back-testing)技术,对模型在样本内的...针对金融收益胖尾分布特征及条件波动率长记忆性特征,运用FIGARCH对条件波动率建模、极值理论(extreme value theory,EVT)对标准收益序列的尾部建模,测度出金融市场动态极值风险,进而运用返回测试(back-testing)技术,对模型在样本内的测度准确性与样本外的推广能力进行稳健性检验.实证研究结果表明,无论是中国新兴市场,还是西方成熟发达市场,金融收益与标准收益均呈现出明显的有偏胖尾分布特征;金融收益条件波动率均展现出长记忆性特征;EVT与FIGARCH模型相结合的动态极值风险测度模型不仅在样本内表现出优越的风险测度能力,而且在样本外同样具有可靠的预测推广能力.展开更多
基金the National Natural Science Foundation of China (No. 79970041).
文摘This paper investigates methods of value-at-risk (VaR) estimation using extreme value theory (EVT). It compares two different estimation methods, 'two-step subsample bootstrap' based on moment estimation and maximum likelihood estimation (MLE), according to their theoretical bases and computation procedures. Then, the estimation results are analyzed together with those of normal method and empirical method. The empirical research of foreign exchange data shows that the EVT methods have good characters in estimating VaR under extreme conditions and 'two-step subsample bootstrap' method is preferable to MLE.
基金The National Natural Science Foundation of China (No70501025 & 70572089)
文摘The accuracy and time scale invariance of value-at-risk (VaR) measurement methods for different stock indices and at different confidence levels are tested. Extreme value theory (EVT) is applied to model the extreme tail of standardized residual series of daily/weekly indices losses, and parametric and nonparametric methods are used to estimate parameters of the general Pareto distribution (GPD), and dynamic VaR for indices of three stock markets in China. The accuracy and time scale invariance of risk measurement methods through back-testing approach are also examined. Results show that not all the indices accept time scale invariance; there are some differences in accuracy between different indices at various confidence levels. The most powerful dynamic VaR estimation methods are EVT-GJR-Hill at 97.5% level for weekly loss to Shanghai stock market, and EVT-GARCH-MLE (Hill) at 99.0% level for weekly loss to Taiwan and Hong Kong stock markets, respectively.
文摘This study investigates calendar anomalies: day-of-the-week effect and seasonal effect in the Value-at-Risk (VaR) analysis of stock returns for AAPL during the period of 1995 through 2015. The statistical properties are examined and a comprehensive set of diagnostic checks are made on the two decades of AAPL daily stock returns. Combing the Extreme Value Approach together with a statistical analysis, it is learnt that the lowest VaR occurs on Fridays and Mondays typically. Moreover, high Q4 and Q3 VaR are observed during the test period. These results are valuable for anyone who needs evaluation and forecasts of the risk situation in AAPL. Moreover, this methodology, which is applicable to any other stocks or portfolios, is more realistic and comprehensive than the standard normal distribution based VaR model that is commonly used.
文摘针对金融收益胖尾分布特征及条件波动率长记忆性特征,运用FIGARCH对条件波动率建模、极值理论(extreme value theory,EVT)对标准收益序列的尾部建模,测度出金融市场动态极值风险,进而运用返回测试(back-testing)技术,对模型在样本内的测度准确性与样本外的推广能力进行稳健性检验.实证研究结果表明,无论是中国新兴市场,还是西方成熟发达市场,金融收益与标准收益均呈现出明显的有偏胖尾分布特征;金融收益条件波动率均展现出长记忆性特征;EVT与FIGARCH模型相结合的动态极值风险测度模型不仅在样本内表现出优越的风险测度能力,而且在样本外同样具有可靠的预测推广能力.