期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Spontaneous symmetry breaking vacuum energy in cosmology
1
作者 周康 岳瑞宏 +1 位作者 杨战营 邹德成 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期617-622,共6页
The gravitational effect of spontaneous symmetry breaking vacuum energy density is investigated by subtracting the fiat space-time contribution from the energy in the curved space-time. We find that the remaining effe... The gravitational effect of spontaneous symmetry breaking vacuum energy density is investigated by subtracting the fiat space-time contribution from the energy in the curved space-time. We find that the remaining effective energy- momentum tensor is too small to cause the acceleration of the universe, although it satisfies the characteristics of dark energy. However, it could provide a promising explanation to the puzzle of why the gravitational effect produced by the huge symmetry breaking vacuum energy in the electroweak theory has not been observed, as it has a sufficiently small value (smaller than the observed cosmic energy density by a factor of 1032). 展开更多
关键词 vacuum energy density cosmology constant spontaneous symmetry breaking
下载PDF
Revealing the Essence of Electric Permittivity Constant 被引量:1
2
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第1期210-217,共8页
Electric constant believed fundamental constant determined only by physical measurement and cannot be calculated. A new theory about the origin and the essence of the electric constant is proposed and mathematical for... Electric constant believed fundamental constant determined only by physical measurement and cannot be calculated. A new theory about the origin and the essence of the electric constant is proposed and mathematical formulation is described. The vacuum is considered to be superfluid and the electric constant is described as a physical property of the “vacuum”. Hydrodynamics laws are applied to calculate the elasticity and the compressibility of the vacuum to obtain the electric constant value. Thus, electric permittivity is the expression of compressibility of the vacuum which is the capability of the vacuum to permit electric field lines. In conclusion, electric constant is not fundamental constant but observable parameter of the vacuum which depends mainly by the vacuum density. This result could have important consequences in our understanding the origin of physical forces forward Universal Unified Theory based on one constant only, the density of the vacuum. 展开更多
关键词 Electric Constant ELASTICITY vacuum Compressibility vacuum density
下载PDF
New Mechanism and Analytical Formula for Understanding the Gravity Constant <i>G</i>
3
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第3期357-367,共11页
The nature of gravitation and <em>G</em> is not well understood. A new gravitation mechanism is proposed that explains the origin and essence of the gravitational constant, <em>G</em>. Based on... The nature of gravitation and <em>G</em> is not well understood. A new gravitation mechanism is proposed that explains the origin and essence of the gravitational constant, <em>G</em>. Based on general relativity, the vacuum is considered to be a superfluid with measurable density. Rotating bodies drag vacuum and create a vortex with gradient pressure. The drag force of vacuum fluid flow in the arm of the vortex is calculated relative to the static vacuum and a value that is numerically equal to that of <em>G</em> is obtained. Using Archimedes’ principle, it is determined that <em>G</em> is the volume of vacuum displaced by a force equivalent to its weight which is equal to the drag force of the vacuum. It is concluded that the gravitational constant <em>G</em> expresses the force needed to displace a cubic metre of vacuum that weighs one kg in one second. Therefore, <em>G</em> is not a fundamental physical constant but rather is an expression of the resistance encountered by the gravitational force in the vacuum. 展开更多
关键词 Gravitational Constant vacuum density Drag Force Vortex Formation Specific Volume Flow Archimedes’ Principle
下载PDF
The Essence and Origin of the Magnetic Constant
4
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第4期663-670,共8页
In this study, the essence and origin of the magnetic constant are discussed and a mechanism that allows real estimations of the magnetic constant based upon the vacuum density description is proposed. By considering ... In this study, the essence and origin of the magnetic constant are discussed and a mechanism that allows real estimations of the magnetic constant based upon the vacuum density description is proposed. By considering the vacuum as a liquid with a measurable density and the electron as a vortex, hydrodynamic laws are applied to measure the diminished momentum of a rotating electron in a vacuum, thus obtaining a value similar to the experimentally derived value of the magnetic constant. A consequence of this description is that the magnetic constant can be expressed as the shear stress per unit time of the vacuum;this means that it is an observable vacuum parameter and not a fundamental constant. 展开更多
关键词 Magnetic Constant Magnetic Permeability Shear Stress vacuum density vacuum Viscosity
下载PDF
New Theory to Understand the Mechanism of Gravitation
5
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第3期462-472,共11页
Gravitation is still the least understood interaction among the fundamental forces of Nature. A new theory that explains the mechanism of gravitation and the origin Newton’s laws of gravitation and general relativity... Gravitation is still the least understood interaction among the fundamental forces of Nature. A new theory that explains the mechanism of gravitation and the origin Newton’s laws of gravitation and general relativity and distinguishes between two of the Newton’s laws has been proposed. It is shown that the vortex formation created during the Big Bang event is the origin of the gravitational force. The vortex curves the vacuum (space-time) around it, attract and condense energy and dust to its center to form the mass. The gradient pressure in the vortex creates a flow that upon interaction with an object transfers a part of its momentum to the object and pushes it toward the center. The force exercised on the object is equivalent to Newton’s second law. The force of attraction between two vortices is equivalent to Newton’s third law. The drag force between the energy flow of the vortex and the static vacuum diminishes the gravitational force and is equivalent to the G constant. The proposed theory could provide new interesting insights for a comprehensive understanding of gravitation and represents a theoretical starting point for the engineering of anti-gravitation technology. 展开更多
关键词 Vortex Formation vacuum density Pressure Gradient General Relativity Newton Laws of Gravitation G Constant
下载PDF
The Nature and Origin of Inertia
6
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第2期761-772,共12页
This paper aims to present a new theory that explains the mechanism of inertia at providing a satisfying explanation for the yet unknown mechanism for inertia. By considering the vacuum as a liquid with a measurable d... This paper aims to present a new theory that explains the mechanism of inertia at providing a satisfying explanation for the yet unknown mechanism for inertia. By considering the vacuum as a liquid with a measurable density, hydrodynamics laws are used to describe the behaviour of the vacuum when it is dragged by moving body. The inertia is the result of the initial resistance between the moving bodies against the static vacuum. The moving body drags the resisting vacuum during acceleration, till the point that the vacuum travels with the moving body and has the same velocity. When the body decelerates, the vacuum continues to flow and to push the body at the same direction of the original flow till its complete stop. Formulations based on Planck theory derived to prove its equivalence to Newton inertia law. Formulation based on hydrodynamics is derived to confirm the theory that the force exerted by the vacuum on static body in gravity and on moving body in inertia is equivalent to Newton law. The strong equivalence principle is reaffirmed and, consequently, Einstein’s equations are preserved. 展开更多
关键词 Inertia Force vacuum density Drag Force Newton Inertia Law Gravitation Force
下载PDF
Electron Shape and Structure: A New Vortex Theory
7
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第3期340-352,共13页
Along with all other quantum objects, an electron is partly a wave and partly a particle. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its traj... Along with all other quantum objects, an electron is partly a wave and partly a particle. The corpuscular properties of a particle are demonstrated when it is shown to have a localized position in space along its trajectory at any given moment. When an electron looks more like a particle it has no shape, “point particle”, according to the Standard Model, meaning that it interacts as if it is entirely located at a single point in space and does not spread out to fill a three-dimensional volume. Therefore, in the sense of particle-like interactions, an electron has no shape. In this paper, a new theory is proposed in which the electron has a structure and a shape. The central idea is that an electron is a frictionless vortex with conserved momentum made out of condensed vacuum generated in the Big Bang from massless virtual photons that acquire mass when moving in the vortex at the speed of light. Using Hydrodynamics laws and applying them on the superfluid vacuum the basic properties of the electron are described here forth. This study provides mathematical models to calculate the mass, kinetic energy, density, volume, time, charge, and particle-wave duality. Such mathematical formulations are presented to confirm the theory. We conclude that the shape of the electron is accessible to human imagination, knowing its shape helps to determine its properties and shed a light on how matter is made and to explain the interactions of sub-atomic particles. 展开更多
关键词 Electron Structure VORTEX Hydrodynamics Laws vacuum density
下载PDF
An approach to dark energy problem through linear invariants
8
作者 Jeong Ryeol Choi 《Chinese Physics C》 SCIE CAS CSCD 2011年第3期233-242,共10页
The time evolution of vacuum energy density is investigated in the coherent states of inflationary universe using a linear invariant approach. The linear invariants we derived are represented in terms of annihilation ... The time evolution of vacuum energy density is investigated in the coherent states of inflationary universe using a linear invariant approach. The linear invariants we derived are represented in terms of annihilation operators. On account of the fact that the coherent state is an eigenstate of an annihilation operator, the wave function in the coherent state is easily evaluated by solving the eigenvalue equation of the linear invariants. The expectation value of the vacuum energy density is derived using this wave function. Fluctuations of the scalar field and its conjugate momentum are also investigated. Our theory based on the linear invariant shows that the vacuum energy density of the universe in a coherent state is decreased continuously with time due to nonconservative force acting on the coherent oscillations of the scalar field, which is provided by the expansion of the universe. In effect, our analysis reveals that the vacuum energy density decreases in proportion to t-β where β is 3/2 for radiation-dominated era and 2 for matter-dominated era. In the case where the duration term of radiation-dominated era is short enough to be negligible, the estimation of the relic vacuum energy density agrees well with the current observational data. 展开更多
关键词 cosmological constant problem vacuum energy density coherent state linear invariant
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部