期刊文献+
共找到1,321篇文章
< 1 2 67 >
每页显示 20 50 100
Improvement of microstructure and mechanical properties of Al−Cu−Li−Mg−Zn alloys through water-cooling centrifugal casting technique
1
作者 Qing-bo YANG Wen-jing SHI +4 位作者 Wen LIU Miao WANG Wen-bo WANG Li-na JIA Hu ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3486-3503,共18页
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime... The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases. 展开更多
关键词 Al−Cu−Li−Mg−Zn alloy water-cooling centrifugal casting microstructure mechanical properties segregation behavior
下载PDF
Surface quality, microstructure and mechanical properties of Cu-Sn alloy plate prepared by two-phase zone continuous casting 被引量:1
2
作者 刘雪峰 罗继辉 王晓晨 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1901-1910,共10页
Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate... Cu-4.7%Sn (mass fraction) alloy plate was prepared by the self-developed two-phase zone continuous casting (TZCC) process. The relationship between process parameters of TZCC and surface quality of the alloy plate was investigated. The microstructure and mechanical properties of the TZCC alloy plate were analyzed. The results show that Cu-4.7%Sn alloy plate with smooth surface can be obtained by means of reasonable matching the entrance temperature of two-phase zone mold and the continuous casting speed. The microstructure of the TZCC alloy is composed of grains-covered grains, small grains with self-closed grain boundaries, columnar grains and equiaxed grains. Compared with cold mold continuous casting Cu-4.7%Sn alloy plate, the room temperature tensile strength and ductility of the TZCC alloy plate are greatly improved. 展开更多
关键词 Cu-Sn alloy plate two-phase zone continuous casting surface quality grains-covered grains microstructure mechanical property
下载PDF
Effects of combined addition of Y and Ca on microstructure and mechanical properties of die casting AZ91 alloy 被引量:4
3
作者 王峰 王越 +2 位作者 毛萍丽 于宝义 郭全英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期311-317,共7页
A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casti... A series of die casting heat-resistant magnesium alloys based on Mg-Al system were developed for automotive application by adding Y and various amounts of Ca. The mechanical properties and microstructures of die casting AZ91 alloy with combined addition of Y and Ca were investigated by optical microscopy, scanning electronic microscopy, X-ray diffractometry and mechanical property test. The results show that the combined addition of Y and Ca can refine the as-die-cast microstructure, result in the formation of Al2Ca phase and Al2Y phase, and inhibit the precipitation of Mg17Al12 phase. The combined addition of Y and small amount of Ca has little influence on the ambient temperature tensile properties, but increasing the content of Ca can improve significantly the tensile strength at both ambient and elevated temperatures. It is found that for AZ91-1Y-xCa alloy, the hardness and the elevated temperature tensile strength increase, while the elongation decreases with increasing the addition of Ca. The mechanism of mechanical properties improvement caused by the combined addition of Y and Ca was also discussed. 展开更多
关键词 die casting magnesium alloy AZ91Mg alloy YTTRIUM CALCIUM microstructure tensile property
下载PDF
Effect of applied pressure on microstructure and mechanical properties of Mg-Zn-Y quasicrystal-reinforced AZ91D magnesium matrix composites prepared by squeeze casting 被引量:6
4
作者 杨玲 侯华 +1 位作者 赵宇宏 杨晓敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期3936-3943,共8页
The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were inves... The Mg-Zn-Y quasicrystal-reinforced AZ91 D magnesium matrix composites were prepared by squeeze casting process. The effects of applied pressure on microstructure and mechanical properties of the composites were investigated. The results show that squeeze casting process is an effective method to refine the grain. The composites are mainly composed of α-Mg, β-Mg17Al12 and Mg3Zn6Y icosahedral quasicrystal phase(I-phase). With the increase of applied pressure, the contents of β-Mg17Al12 phase and Mg3Zn6 Y quasicrystal particles increase, further matrix grain refinement occurs and coarse dendritic α-Mg transforms into equiaxed grain structure. The composite exhibits the maximum ultimate tensile strength and elongation of 194.3 MPa and 9.2% respectively when the applied pressure is 100 MPa, and a lot of dimples appear on the tensile fractography. Strengthening mechanisms of quasicrystal-reinforced AZ91 D magnesium matrix composites are chiefly fine-grain strengthening and quasicrystal particles strengthening. 展开更多
关键词 magnesium matrix composite squeeze casting QUASICRYSTAL microstructure mechanical properties
下载PDF
Effects of moulding sands and wall thickness on microstructure and mechanical properties of Sr-modified A356 aluminum casting alloy 被引量:10
5
作者 孙少纯 袁博 刘满平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1884-1890,共7页
The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands inc... The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data. 展开更多
关键词 A356 aluminum alloy sand casting cooling condition strontium modification microstructure mechanical properties
下载PDF
Effect of austempering parameters on microstructure and mechanical properties of horizontal continuous casting ductile iron dense bars 被引量:7
6
作者 Chun-jie Xu Pan Dai +3 位作者 Zheng-yang Zhang Zhong-ming Zhang Jin-cheng Wang Yong-hui Liu 《China Foundry》 SCIE CAS 2015年第2期104-110,共7页
In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and ... In the present research, the orthogonal experiment was carried out to investigate the influence of different austempering process parameters (i.e. austenitizing temperature and time, and austempering temperature and time) on microstructure and mechanical properties of LZQT500-7 ductile iron dense bars with 172 mm in diameter which were produced by horizontal continuous casting (HCC). The results show that the major factors influencing the hardness of austempered ductile iron (ADI) are austenitizing temperature and austempering temperature. The fraction of retained austenite increases as the austenitizing and austempering temperatures increase. When austenitizing temperature is low, acicular ferrite and retained austenite can be efifciently obtained by appropriately extending the austenitizing time. The proper austmepering time could ensure enough stability of retained austenite and prevent high carbon austenite decomposition. The optimal mechanical properties of ADI can be achieved with the fol owing process parameters: austenitizing temperature and time are 866 &#176;C and 135 min, and austempering temperature and time are 279 &#176;C and 135 min, respectively. The microstructure of ADI under the optimal austempering process consists of ifne acicular ferrite and a smal amount of retained austenite, and the hardness, tensile strength, yield strength, elongation and impact toughness of the bars are HBW 476, 1670 MPa, 1428 MPa, 2.93%and 25.7 J, respectively. 展开更多
关键词 horizontal continuous casting (HCC) ductile iron dense bars austempered ductile iron (ADI) microstructure and mechanical properties orthogonal test
下载PDF
Effect of Stirring Velocity in Micro Fused-Casting for Metal on Microstructure and Mechanical Properties of A356 Aluminum Alloy Slurry 被引量:3
7
作者 罗晓强 李正阳 +1 位作者 SHI Xiaojiao 燕青芝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1131-1136,共6页
A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizon... A novel micro fused-casting for metal(MFCM) process for producing A356 aluminum alloy slurry was proposed. MFCM means that the refined metal slurry is pressed out from the outlet of bottom of crucible to the horizontal movable plate. With the aid of 3D manufacturing software, the melt is solidified and formed layer by layer. The stirring could keep the ingredients and the heat diffusion of metal slurry uniform in the crucible due to the shear force breaking down the dendrite arms. The solidus and liquidus temperatures of A356 alloy were 559.2 and 626.3 ℃, respectively, which were measured by differential scanning calorimetry(DSC). Effect of different stirring velocities of MFCM on the microstructure and mechanical properties of A356 slurry was investigated with the pouring temperature controlled at 620 ℃. The microstructure and mechanical performance were the best when the stirring velocity was 1 200 r/min in MFCM. The microstructures of the A356 aluminum alloy slurry were mainly composed of fine spherical or rose grains. The average roundness and average grain size reached 2.2 and 41 μm and the tensile strength of A356 alloy slurry reached 207.8 MPa, while the average vickers hardness was 81.1 HV. 展开更多
关键词 micro fused-casting stirring velocity microstructure mechanical property
下载PDF
Effect of vacuum annealing on microstructure and mechanical properties of TA15 titanium alloy sheets 被引量:4
8
作者 赵慧俊 王宝雨 +2 位作者 刘钢 杨雷 校文超 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1881-1888,共8页
The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical ... The mechanical properties, microstructures, and fractographs of TA15 sheets vacuum-annealed under different patterns were investigated. The results indicate that vacuum annealing significantly improves the mechanical properties of the sheets in comparison with those after ambient annealing. With increasing the annealing temperature, the phase boundaries and secondary a-phase increase, whereas the volume fraction of primary a-phase decreases, resulting in increased strength and decreased elongation A relatively fine secondary a-phase is obtained after double annealing. The desirable mechanical properties (i.e., ultimate tensile strength, yield strength, and elongation are 1070 MPa, 958 MPa, and 15%, respectively) are obtained through double annealing ((950 ℃/2 h, AC)+(600 ℃/2 h, AC)). The fractographs obtained after tensile tests show that the deepest and largest dimples are formed in the specimen annealed at 850 ℃, which indicates that the best plasticity is obtained at this annealing temperature. 展开更多
关键词 TA15 sheets vacuum annealing microstructure mechanical properties FRACTOGRAPH
下载PDF
Role of alloying and heat treatment on microstructure and mechanical properties of cast Al-Li alloys:A review
9
作者 Guo-hua Wu You-jie Guo +4 位作者 Fang-zhou Qi Shen Zhang Yi-xiao Wang Xin Tong Liang Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第5期445-460,共16页
Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and ... Due to the prominent advantages of low density,high elastic modulus,high specific strength and specific stiffness,cast Al-Li alloys are suitable metallic materials for manufacturing complex large-sized components and are ideal structural materials for aerospace,defense and military industries.On the basis of the microstructural characteristics of cast Al-Li alloys,exploring the role of alloying and micro-alloying can stabilize their dominant position and further expand their application scope.In this review,the development progress of cast Al-Li alloys was summarized comprehensively.According to the latest research highlights,the influence of alloying and heat treatment on the microstructure and mechanical properties was systematically analyzed.The potential methods to improve the alloy performance were concluded.In response to the practical engineering requirements of cast Al-Li alloys,the scientific challenges and future research directions were discussed and prospected. 展开更多
关键词 cast Al-Li alloy ALLOYING microstructure mechanical properties heat treatment
下载PDF
Effect of salt bath temperature on microstructure and mechanical properties of an austempered alloyed cast iron
10
作者 Jie Zheng Ji-lin Li +2 位作者 Sheng-feng Li Xiao-hui Tu Rui-xue Li 《China Foundry》 SCIE EI CAS CSCD 2024年第6期709-716,共8页
An alloyed cast iron was prepared by horizontal continuous casting.To study the salt bath temperature on microstructure and mechanical properties,the alloyed cast iron was firstly austenitized at 950℃for 3 h and then... An alloyed cast iron was prepared by horizontal continuous casting.To study the salt bath temperature on microstructure and mechanical properties,the alloyed cast iron was firstly austenitized at 950℃for 3 h and then austempered in salt bath at various temperatures(250℃,300℃and 350℃)for another 3 h.The scanning electron microscopy(SEM),electron backscattered diffraction(EBSD),and X-ray diffraction(XRD)were employed to observe the microstructure and test the mechanical properties of the alloyed cast iron.Results show that the microstructure of the alloyed cast iron is mainly composed of acicular or feathery ferrite(bainite),retained austenite,carbide,and graphite.When austempered in salt bath at 250℃,300℃and 350℃for 3 h,the volume fractions of retained austenite are 33.1%,41.7%,and 57.2%,the thickness of acicular ferrite are 0.25μm,0.3μm,and 0.8μm.As the salt bath austempering temperature increases,the mechanical properties decrease due to the increase of the volume fraction of retained austenite and the thickness of acicular ferrite.The highest tensile strength of the alloyed cast iron is achieved when it is austempered at 250℃in a salt bath.Under these conditions,the tensile strength of the alloyed cast iron can reach 1,429 MPa.Tensile test results indicate that the fracture mechanism is predominantly brittle fracture. 展开更多
关键词 alloyed cast iron austempering treatment retained austenite microstructure mechanical properties
下载PDF
Effects of Alloying Elements on the Microstructures and Mechanical Properties of Heavy Section Ductile Cast Iron 被引量:14
11
作者 G.S.Cho K.H.Choe +1 位作者 K.W.Lee A.Ikenaga 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第1期97-101,共5页
The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea... The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries. 展开更多
关键词 Heavy section ductile cast iron Alloying elements As-cast microstructures As-cast mechanical properties
下载PDF
Effects of heat treatment on the microstructures and mechanical properties of a new type of nitrogen-containing die steel 被引量:8
12
作者 Jing-yuan Li Peng Zhao +2 位作者 Jun Yanagimoto Sumio Sugiyama Yu-lai Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第6期511-517,共7页
Nitrogen can increase the strength of steels without weakening the toughness and improve the corrosion resistance at the same time. Compared with conventional nitrogen-free die steels, a new type of nitrogen-containin... Nitrogen can increase the strength of steels without weakening the toughness and improve the corrosion resistance at the same time. Compared with conventional nitrogen-free die steels, a new type of nitrogen-containing die steel was developed with many superior properties, such as high strength, high hardness, and good toughness. This paper focused on the effects of heat treatment on the microstruc- tures and mechanical properties of the new type of nitrogen-containing die steel, which were investigated by the optimized deformation process and heat treatment. Isothermal spheroidal annealing and high-temperature quenching as well as high-temperature tempering were ap- plied in the experiment by means of an orthogonal method after the steel was multiply forged. The mechanical properties of nitro- gen-containing die steel forgings are better than the standard of NADCA #207-2003. 展开更多
关键词 die steels NITROGEN heat treatment microstructure mechanical properties forgings
下载PDF
Influence of Ce addition on microstructure and mechanical properties of high pressure die cast AM50 magnesium alloy 被引量:8
13
作者 Faruk MERT Ahmet ZDEMIR +1 位作者 Karl Ulrich KAINER Norbert HORT 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期66-72,共7页
The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results... The influence of Ce addition on the microstructure and mechanical properties of AM50 magnesium alloy was investigated to improve its mechanical properties.The results show that the addition of Ce to AM50 alloy results in the grain refinement and the mechanical properties of the Ce-modified AM50 at room and elevated temperatures are remarkably improved.AM50 magnesium alloy containing 1% Ce(mass fraction) shows better refinement and mechanical properties compared with the AM50 magnesium alloy with 0.5% Ce and even AM50 alloy without any Ce. 展开更多
关键词 AM50 magnesium alloy CERIUM die casting microstructure mechanical properties
下载PDF
Influence of dynamic recrystallization on microstructure and mechanical properties of welding zone in Al-Mg-Si aluminum profile during porthole die extrusion 被引量:6
14
作者 Shi-kang LI Luo-xing LI +2 位作者 Hong HE Zhi-wen LIU Long ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1803-1815,共13页
The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morpholo... The effect of dynamic recrystallization(DRX)on the microstructure and mechanical properties of 6063 aluminum alloy profile during porthole die extrusion was studied through experiment and simulation.The grain morphology was observed by means of electron backscatter diffraction(EBSD)technology.The results show that,at low ram speeds,increasing the ram speed caused an increase in DRX fraction due to the increase of temperature and strain rate.In contrast,at high ram speeds,further increasing ram speed had much less effect on the temperature,and the DRX faction decreased due to high stain rates.The microhardness and fraction of low angle boundaries in the welding zones were lower than those in the matrix zones.The grain size in the welding zone was smaller than that in the matrix zone due to lower DRX fraction.The decrease of grain size and increase of extrudate temperature were beneficial to the improvement of microhardness. 展开更多
关键词 6063 aluminum alloy porthole die extrusion dynamic recrystallization microstructure mechanical properties
下载PDF
Influence of roll speed difference on microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling process 被引量:5
15
作者 Mohammad Mehdi AMIRI Faramarz FERESHTEH-SANIEE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第4期901-912,共12页
The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investiga... The influences of the dissimilarity in the roll speeds on the microstructure, texture and mechanical properties of 7075 aluminum plates produced via combined continuous casting and rolling(CCCR) process were investigated. Several experiments were conducted with three different upper/lower roll rotational speed ratios(ω/ω0, ω is the upper roll rotational speed and ω0 is the lower roll rotational speed), namely 1:1, 1:1.2 and 1:1.4. It was found that the greatest dissimilarity in the roll speed(ω/ω0=1:1.4) improved the yield strength and ultimate tensile strength of 7075 Al plate in the rolling direction by 41.5% and 21.9%, respectively. Moreover, at a roll speed ratio of ω/ω0=1:1.4, the average grain size was decreased by 36% whereas the mean hardness of the transverse cross-section of the finally rolled plate was increased by about 9.2%. Texture studies also revealed that the more the difference in the roll speeds was, the greater the isotropy and the hardness of the final product were. Nevertheless, conducting CCCR operation with different roll speeds resulted in about 6% reduction in the elongation of the deformed plate. 展开更多
关键词 continuous casting and rolling 7075 Al alloy roll speed difference microstructure mechanical properties TEXTURE anisotropy
下载PDF
Influence of samarium content on microstructure and mechanical properties of recycled die-cast YL112 aluminum alloys 被引量:2
16
作者 Zhi Hu Yan Hong +2 位作者 Yuan-sheng Rao Hong-xu Qiu Xian-ming Ruan 《China Foundry》 SCIE CAS 2015年第4期269-276,共8页
The influence of Sm (Samarium) content on microstructure and mechanical properties of recycled die-cast YLl12 aluminum alloys was investigated. The results show that many small Sm-rich particles form in the recycled... The influence of Sm (Samarium) content on microstructure and mechanical properties of recycled die-cast YLl12 aluminum alloys was investigated. The results show that many small Sm-rich particles form in the recycled die-cast YLl12 alloys with Sm addition. At the same time, the secondary dendrite arm spacing in the YLl12 alloys modified with Sm is smaller than that of the unmodified alloy. The eutectic Si of recycled die- cast YL112-xSm alloys transforms from coarse acicular morphology to fine fibres. Mechanical properties of the investigated recycled die-cast YLl12 aluminum alloys are enhanced with Sm addition, and a maximal ultimate tensile strength value (276 MPa) and elongation (3.76%) are achieved at a Sm content of 0.6wt.%. Due to the modification of eutectic Si by Sm, numerous tearing ridges and tiny dimples on the fractures of tensile samples are observed. 展开更多
关键词 rare earth aluminum alloy die casting SAMARIUM microstructure eutectic Si nano particles mechanical properties
下载PDF
A high-Nb TiAl alloy with highly refined microstructure and excellent mechanical properties fabricated by electromagnetic continuous casting 被引量:3
17
作者 Yong-zhe Wang Hong-sheng Ding +3 位作者 Rui-run Chen Jing-jie Guo Heng-zhi Fu Jin-peng Lu 《China Foundry》 SCIE 2016年第5期342-345,共4页
In the present research, microstructure refinement of a high-Nb TiAl alloy (Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting (EMCC) technique. The microstructure of an ingot obtai... In the present research, microstructure refinement of a high-Nb TiAl alloy (Ti-48Al-8Nb-0.15B) was realized by means of the electromagnetic continuous casting (EMCC) technique. The microstructure of an ingot obtained by EMCC was analyzed using scanning electron microscopy (SEM). As compared with the raw as-cast alloy, the obtained EMCC alloy presented a much finer microstructure with lamellar colonies with a mean size of about 50-70 μm because the electromagnetic stirring broke initial dendrites and enhanced the heterogeneous nucleation. As the grains were refined, the properties of the TiAl alloy were improved significantly. This implies that the EMCC technique could offer the possibility of application for high-Nb TiAl alloys with a refined microstructure and excellent properties to be used as a structural material. 展开更多
关键词 high-Nb TiAl alloy microstructure electromagnetic continuous casting mechanical properties
下载PDF
Effect of pressure on microstructures and mechanical properties of Al-Cu-based alloy prepared by squeeze casting 被引量:24
18
作者 张明 张卫文 +2 位作者 赵海东 张大童 李元元 《中国有色金属学会会刊:英文版》 CSCD 2007年第3期496-501,共6页
A new high-strength aluminum alloy with better fluidity than that of ZL205A was developed. The effect of applied pressure during squeeze casting on microstructures and properties of the alloy was studied. The results ... A new high-strength aluminum alloy with better fluidity than that of ZL205A was developed. The effect of applied pressure during squeeze casting on microstructures and properties of the alloy was studied. The results show that the fluidity of the alloy is 16% and 21% higher than that of ZL205A at the pouring temperature of 993 K and 1 013 K, respectively. Compared with permanent-mold casting, mechanical properties of the alloy prepared by squeeze casting are much higher. The tensile strength and elongation of the alloy are 520 MPa and 7.9% in squeeze casting under an applied pressure of 75 MPa, followed by solution treatment at 763 K for 1 h and at 773 K for 8 h, quenching in water at normal temperature and aging at 463 K for 5 h. The improvement of mechanical properties is attributed to the remarkable decreasing of the secondary dendrite arm spacing(SDAS) and eliminating of micro-porosity in the alloy caused by applied pressure. 展开更多
关键词 铜铝合金 挤压 铸造技术 微结构 机械性质
下载PDF
Study on the microstructure and mechanical properties of medium carbon Cr-Si-Mn-Mo-V steel for cast inserted dies 被引量:1
19
作者 LIU Jin-hai LI Guo-lu +1 位作者 HAO Xiao-yan LIU Gen-sheng 《China Foundry》 SCIE CAS 2005年第4期260-263,共4页
The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, mar... The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, martensite, bainite, and austenite; and that the annealed microstructure is granular pearlite. The mechanical properties of cast inserted dies approach that of forged inserted dies. The tensile strength is 855 MPa, the elongation is 16%, the impact toughness is 177 J/cm2, and the hardness after annealing and quenching are HRC 19 and HRC 60-62. In addition, the cast inserted dies have good hardenability. The depth of the hardening zone and the hardness after flame quenching satisfy the operating requirements. The cast inserted dies could completely replace the forged inserted dies for making the dies of automobile covering components. 展开更多
关键词 STEEL castingS inserted die microstructure mechanical properties FLAME QUENCHING
下载PDF
On the deformation behavior of heterogeneous microstructure and its effect on the mechanical properties of die cast AZ91D magnesium alloy 被引量:1
20
作者 Mengwu Wu Yingying Hou +3 位作者 Lin Hua Huijuan Ma Xiaobo Li Shoumei Xiong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第7期1981-1993,共13页
Both a conventional flow distributer and an improved one with a flow buffer were applied respectively during the high pressure die casting(HPDC)process,and samples of AZ91D magnesium alloy with different microstructur... Both a conventional flow distributer and an improved one with a flow buffer were applied respectively during the high pressure die casting(HPDC)process,and samples of AZ91D magnesium alloy with different microstructure mainly consisting ofα-Mg grains,β-phase and porosities were obtained.According to the grain orientation analysis,the predominant deformation behavior inα-Mg grains was dislocation slip,supplemented by deformation twinning.Dislocation slip was more difficult to occur in the samples with the improved flow distributer on account of the fact that the size ofα-Mg grains in the microstructure was finer and more uniform.During the in situ tensile deformation test,cracks were observed to initiate from gas-shrinkage pore and island-shrinkage,and two main crack propagation mechanisms,porosity growth and coalescence were found accordingly.When the crack was in contact with theβ-phase,it would pass through and fracture the networkβ-phase,whereas bypass the islandβ-phase by detaching it from the surroundingα-Mg grains.Mechanical property tests showed that the samples with relatively more homogeneous microstructure would perform higher mechanical properties,which was the combined effect of matrixα-Mg grains,β-phase,and porosities. 展开更多
关键词 Magnesium alloy High pressure die casting microstructure Deformation behavior mechanical properties
下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部