In vacuum environment, the exhaust flow of attitude control thrusters would expand freely and produce the plume, which possibly causes undesirable contamination, aerodynamic force and heating effects to the spacecraft...In vacuum environment, the exhaust flow of attitude control thrusters would expand freely and produce the plume, which possibly causes undesirable contamination, aerodynamic force and heating effects to the spacecraft. Plume work station (PWS) is developed by Beihang University (BUAA) for numerically simulating the vacuum plume and its effects. An approach which combines the direct simulation Monte Carlo (DSMC) method and difference solution of Navier-Stokes (N-S) equations is applied. The internal flows in nozzles are simulated by solving the NS equations. The flow parameters at nozzle exit are used as the inlet boundary condition for the DSMC calculation. Experimental studies are carried out in a supersonic low density wind tunnel which could simulate the 60-80 km altitude environment to investigate the plume and its effects. To demonstrate the capability of PWS, numerical simulations are performed for the vacuum plume of several typical attitude control thrusters. The research results are of great help for the engineering design.展开更多
This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and t...This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and testing capabilities of the PES have reached a highly advanced level at home and abroad. The PES mainly consists of a vacuum chamber, vacuum acquisition system, nitrogen system, helium system, and parameter measurement system. A breakthrough was obtained on the Large Scale Cryo-Pumping System, which was based on a combined liquid nitrogen and liquid helium heat sink. An internal cryopump with a limiting temperature of 4.2 K and an efficient absorption area of 305 m2 was developed. The absorption capability of the cryopump was above 7×107 L/s. Vacuum plume tests were performed in the temperature ranges of ambient temperature, liquid nitrogen, and liquid helium. The experimental results showed that the plume test capability of PES is higher than that of similar foreign equipment STG and CHAFF-4. For 2 g/s and 117 N rocket engines, the dynamic vacuum degree of environment was 8.0×10?4 Pa(approximately 137 km height) and 1.1×10?2 Pa(approximately 106 km height), respectively.展开更多
Pressure-sensitive paint(PSP) technique was employed to experimentally investigate the aerodynamic force effect of vacuum plume in this study. The characterization and comparison for two types of PSP were firstly cond...Pressure-sensitive paint(PSP) technique was employed to experimentally investigate the aerodynamic force effect of vacuum plume in this study. The characterization and comparison for two types of PSP were firstly conducted in an air pressure range from0.05 to 5000 Pa. The PSPs were prepared using PtTFPP as the active dye and different binders, i.e., polymer-ceramic(PC) and poly(1-trimethylsilyl-1-propyne) [poly(TMSP)]. The static calibrations showed that PtTFPP/poly(TMSP) had a higher pressure sensitivity and a lower temperature dependency compared to PtTFPP/PC in this pressure range. The pressure distributions of a single and two interacting plumes impinging onto a flat plate model were measured using PSP technique. The experimental data were compared to numerical solutions that combined both the computed fluid dynamics(CFD) and direct simulation Monte Carlo(DSMC) methods. Remarkable agreements were achieved, demonstrating the feasibility and accuracy of the numerical approach.Finally, the aerodynamic force effect of interacting plumes at different separation distances was investigated numerically.展开更多
文摘In vacuum environment, the exhaust flow of attitude control thrusters would expand freely and produce the plume, which possibly causes undesirable contamination, aerodynamic force and heating effects to the spacecraft. Plume work station (PWS) is developed by Beihang University (BUAA) for numerically simulating the vacuum plume and its effects. An approach which combines the direct simulation Monte Carlo (DSMC) method and difference solution of Navier-Stokes (N-S) equations is applied. The internal flows in nozzles are simulated by solving the NS equations. The flow parameters at nozzle exit are used as the inlet boundary condition for the DSMC calculation. Experimental studies are carried out in a supersonic low density wind tunnel which could simulate the 60-80 km altitude environment to investigate the plume and its effects. To demonstrate the capability of PWS, numerical simulations are performed for the vacuum plume of several typical attitude control thrusters. The research results are of great help for the engineering design.
基金supported by the Space Cooperation Project between Russia and China
文摘This paper introduces a newly developed vacuum Plume effects Experimental System(PES) used for plume effect tests of rocket engines and vacuum heat tests of satellites. The design level, manufacturing technique, and testing capabilities of the PES have reached a highly advanced level at home and abroad. The PES mainly consists of a vacuum chamber, vacuum acquisition system, nitrogen system, helium system, and parameter measurement system. A breakthrough was obtained on the Large Scale Cryo-Pumping System, which was based on a combined liquid nitrogen and liquid helium heat sink. An internal cryopump with a limiting temperature of 4.2 K and an efficient absorption area of 305 m2 was developed. The absorption capability of the cryopump was above 7×107 L/s. Vacuum plume tests were performed in the temperature ranges of ambient temperature, liquid nitrogen, and liquid helium. The experimental results showed that the plume test capability of PES is higher than that of similar foreign equipment STG and CHAFF-4. For 2 g/s and 117 N rocket engines, the dynamic vacuum degree of environment was 8.0×10?4 Pa(approximately 137 km height) and 1.1×10?2 Pa(approximately 106 km height), respectively.
文摘Pressure-sensitive paint(PSP) technique was employed to experimentally investigate the aerodynamic force effect of vacuum plume in this study. The characterization and comparison for two types of PSP were firstly conducted in an air pressure range from0.05 to 5000 Pa. The PSPs were prepared using PtTFPP as the active dye and different binders, i.e., polymer-ceramic(PC) and poly(1-trimethylsilyl-1-propyne) [poly(TMSP)]. The static calibrations showed that PtTFPP/poly(TMSP) had a higher pressure sensitivity and a lower temperature dependency compared to PtTFPP/PC in this pressure range. The pressure distributions of a single and two interacting plumes impinging onto a flat plate model were measured using PSP technique. The experimental data were compared to numerical solutions that combined both the computed fluid dynamics(CFD) and direct simulation Monte Carlo(DSMC) methods. Remarkable agreements were achieved, demonstrating the feasibility and accuracy of the numerical approach.Finally, the aerodynamic force effect of interacting plumes at different separation distances was investigated numerically.