The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstruct...The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstructure and morphology of VFS coatings were observed and analyzed by SEM, X-ray diffractometer and microhardness tester. Diffusion coefficient of every element was calculated by using the experimental results. The influence of the interracial diffusion on the microstructure, Vickers hardness and interracial bond strength of the VFS coatings was studied in detail. The experimental results show that there is a metallurgical bond area between the VFS WC-Co coatings and the steel substrate. The VFS coatings are characterized by the gradient hardness of the interface and the high bond strength to the steel substate, both of which are beneficial to the improvement of the wear resistance and corrosion resistance.展开更多
The Co-based alloy coatings had been prepared by laser cladding and vacuum fusion sintering. Microstructures of the coatings were investigated and the performance of thermal cycling was also tested using scanning elec...The Co-based alloy coatings had been prepared by laser cladding and vacuum fusion sintering. Microstructures of the coatings were investigated and the performance of thermal cycling was also tested using scanning electron microscopy ( SEM) and X-ray diffraction ( XRD ). The results show that the coatings and substrates combine well. The main phase compositions of laser cladding coating are T-Co, Cr23 C6 and Ni2 9 Cro. 7 Feo. 36, while vacuum fusion sintering coating consists of Co, Cr7 C3, and Ni2.9 Cro. 7 Feo. 36. After thermal cycling, the minimum hot cracking width of laser cladding coating is 14 μm; moreover, laser cladding coating maintains high hardness and hot-cracking susceptibility. Those are beneficial to high temperature wear resistance of hot work dies.展开更多
文摘The WC-Co composite coatings bonded tightly to steel substrate have been made by vacuum fusion sinter (VFS). The concentration distribution of some components were measured by the electron probe, and the microstructure and morphology of VFS coatings were observed and analyzed by SEM, X-ray diffractometer and microhardness tester. Diffusion coefficient of every element was calculated by using the experimental results. The influence of the interracial diffusion on the microstructure, Vickers hardness and interracial bond strength of the VFS coatings was studied in detail. The experimental results show that there is a metallurgical bond area between the VFS WC-Co coatings and the steel substrate. The VFS coatings are characterized by the gradient hardness of the interface and the high bond strength to the steel substate, both of which are beneficial to the improvement of the wear resistance and corrosion resistance.
文摘The Co-based alloy coatings had been prepared by laser cladding and vacuum fusion sintering. Microstructures of the coatings were investigated and the performance of thermal cycling was also tested using scanning electron microscopy ( SEM) and X-ray diffraction ( XRD ). The results show that the coatings and substrates combine well. The main phase compositions of laser cladding coating are T-Co, Cr23 C6 and Ni2 9 Cro. 7 Feo. 36, while vacuum fusion sintering coating consists of Co, Cr7 C3, and Ni2.9 Cro. 7 Feo. 36. After thermal cycling, the minimum hot cracking width of laser cladding coating is 14 μm; moreover, laser cladding coating maintains high hardness and hot-cracking susceptibility. Those are beneficial to high temperature wear resistance of hot work dies.