期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A novel route to enhance high-temperature mechanical property and thermal shock resistance of low-carbon Mgo-C bricks by introducing ZrSiO_(4)
1
作者 Chun-hui Sun Ling-ling Zhu +6 位作者 Hao Yan Wei Zhao Jing-xuan Liu Lin Ren Xian-tang Zhao Xiao-song Tong Shu-wen Yu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2024年第6期1436-1448,共13页
Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the ... Conventional MgO-C bricks(graphite content>14 wt.%)produce a great deal of greenhouse gas emission,while low-carbon MgO-C bricks have serious thermal shock resistance during high-temperature service.To enhance the high-temperature mechanical property and thermal shock resistance of low-carbon MgO-C bricks,a novel route of introducing ZrSiO_(4) powder into low-carbon MgO-C bricks was reported in such refractories with 2 wt.% flaky graphite.The results indicate that the low-carbon MgO-C brick with 0.5 wt.%ZrSiO_(4) addition has the maximum hot modulus of rupture at 1400℃ and the corresponding specimen fired in the carbon embedded atmosphere has the maximum residual strength ratio(98.6%)after three thermal shock cycles.It is found that some needle-like AlON and plate-like Al_(2)O_(3)-ZrO_(2) composites were in situ formed in the matrices after the low-carbon MgO-C bricks were coked at 1400℃,which can enhance the high-temperature mechanical property and thermal shock resistance due to the effect of fiber toughening and particle toughening.Moreover,CO_(2) emission of the newly developed low-carbon MgO-C bricks is reduced by 58.3% per ton steel after using them as the working lining of a 90 t vacuum oxygen decarburization ladle. 展开更多
关键词 Low-carbon MgO-C brick ZrsiO_(4) Synergistic toughening effect High-temperature mechanical property Thermal shock resistance vacuum oxygen decarburization ladle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部