期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of depressurizing speed on mold filling behavior and entrainment of oxide film in vacuum suction casting of A356 alloy 被引量:2
1
作者 Shan-guang LIU Fu-yang CAO +4 位作者 Jun-ying YI Xin-yi ZHAO Jing ZENG Zhi-liang NING Jian-fei SUN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第12期3292-3298,共7页
The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image v... The effect of depressurizing speed on mold filling behavior and entrainment of oxide film of A356 alloy was studied. Themold filling behavior and velocity fields were recorded by water simulation with particle image velocimetry. The results show thatthe gate velocity first increased dramatically, then changed with the depressurizing speed: the gate velocity increased slowly atrelatively high depressurizing speed; at reasonable depressurizing speed, the gate velocity kept unchanged; while at lowerdepressurizing speed, the gate velocity decreased firstly and then kept unchanged. High gate velocity results in melt falling backunder gravity at higher speed. The falling velocity is the main factor of oxide film entrainment in vacuum suction casting. The designcriterion of depressurizing rate was deduced, and the A356 alloy castings were poured to test the formula. The four-point bend testand Weibull probability plots were applied to assessing the fracture mechanisms of the as-cast A356 alloy. The results illuminate amethod on designing suitable depressurizing speed for mold filling in vacuum suction casting. 展开更多
关键词 A356 aluminum alloy vacuum suction casting water simulation surface turbulence thin-walled casting oxide film
下载PDF
Effect of centrifugal counter-gravity casting on solidification microstructure and mechanical properties of A357 aluminum alloy 被引量:3
2
作者 Li Xinlei Hao Qitang +1 位作者 Miao Xiaochuan Fan Li 《China Foundry》 SCIE CAS 2014年第1期14-19,共6页
To investigate the influence of Centrifugal Counter-gravity Casting(C3) process on the solidification microstructure and mechanical properties of the casting, A357 aluminum alloy samples were produced by different pro... To investigate the influence of Centrifugal Counter-gravity Casting(C3) process on the solidification microstructure and mechanical properties of the casting, A357 aluminum alloy samples were produced by different process conditions under C3. The results show that C3 has better feeding capacity compared with the vacuum suction casting; and that the mechanical vibration and the convection of melts formed at the centrifugal rotation stage suppress the growth of dendrites, subsequently resulting in the refinement of grains and the improvement of mechanical properties, density and hardness. A finer grain and higher strength can be obtained in the A357 alloy by increasing centrifugal radius and rotational speed. However, casting defects will appear near the rotational axis and the mechanical properties will decrease once the rotational speed exceeds 150 r·min-1. 展开更多
关键词 centrifugal counter-gravity casting vacuum suction casting rotational speed solidification feeding
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部