为适应战场环境的快速变化,要求系统具有高机动性能,也要求用来装载和保护电子设备的携行箱更加轻量化。文中针对轻量化需求,采用高强度、高模量的碳纤维材料和耐冲击性能好的芳纶材料作为增强复合材料,研究真空辅助树脂传递模塑(Vacuum...为适应战场环境的快速变化,要求系统具有高机动性能,也要求用来装载和保护电子设备的携行箱更加轻量化。文中针对轻量化需求,采用高强度、高模量的碳纤维材料和耐冲击性能好的芳纶材料作为增强复合材料,研究真空辅助树脂传递模塑(Vacuum Assisted Resin Transfer Molding,VARTM)整体成型工艺,研制了轻型复合材料携行箱,并对携行箱VARTM工艺成型的有效性及可行性进行了验证。采用该工艺制作的携行箱具有重量轻、强度高、成型快速、生产效率高、制造成本低、环境适应性强等优点,具有较高的工程价值和发展前景。展开更多
The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liq...The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.展开更多
Resin flow correction control with electromagnetic field source, a new variation of the vacuum-assisted resin transfer molding (VARTM) process called electromagnetically induced preform resting (EIPR) for dynamical re...Resin flow correction control with electromagnetic field source, a new variation of the vacuum-assisted resin transfer molding (VARTM) process called electromagnetically induced preform resting (EIPR) for dynamical resin flow controlling is introduced to manipulate the flow front and local permeability to prevent the formation of dry spots. This paper proposes an active and real-time flow control approach that is implemented during the composite laminate infusion. The EIPR process applies an electromagnetic field source to pinch (raise) and vibrate the upper flexible mold to rest the fiber preform and increase the local permeability. Vibration action delivers the fluid through the preform. The EIPR process includes a new and creative upper flexible vacuum bag with embedded elements to lift and create local vibrations via an automated gantry system. The control methodology is performed by tracking the flow front with a real-time correction. System capability is demonstrated with three configurations of preform of different preform permeabilities in each experiment. A low permeability preform is employed in these configurations to disturb the flow pattern and cause an artificial problem or pseudo problem during the filling process. The results indicate that this system fills the mold completely and reduces the filling time without any dry spots and therefore creates no waste material.展开更多
文摘为适应战场环境的快速变化,要求系统具有高机动性能,也要求用来装载和保护电子设备的携行箱更加轻量化。文中针对轻量化需求,采用高强度、高模量的碳纤维材料和耐冲击性能好的芳纶材料作为增强复合材料,研究真空辅助树脂传递模塑(Vacuum Assisted Resin Transfer Molding,VARTM)整体成型工艺,研制了轻型复合材料携行箱,并对携行箱VARTM工艺成型的有效性及可行性进行了验证。采用该工艺制作的携行箱具有重量轻、强度高、成型快速、生产效率高、制造成本低、环境适应性强等优点,具有较高的工程价值和发展前景。
文摘The thermal conductivity of epoxy resin can be increased by a factor of eight to ten by loading with highly conductive particles. However, higher loadings increase the viscosity of the resin and hamper its use for liquid composite molding processes. Thus, the enhancement of the out-of-plane thermal conductivity of carbon composites manufactured by VARTM and accomplished by matrix filling is limited to about 250%. In order to derive higher increases in out-of-plane thermal conductivity, additional measures have to be taken. These consist of introducing thermally conductive fibers in out-of-plane direction of the preform using a 3D-weaving process. Measured out-of-plane thermal conductivities of 3D-woven fabric composites are significantly increased compared to a typical laminated composite. It has been shown that if introducing highly conductive z-fibers, the use of a particle filled resin is not necessary and furthermore should be avoided due to the manufacturing problems mentioned above. An existing analytical model was altered to predict the effective thermal conductivity as a function of the composite material properties such as the thermal conductivities and volume contents of fibers in in-plane and out-of-plane directions, the thermal conductivity of the loaded resin, the grid-density of the out- of-plane fibers, and material properties of the contacting material. The predicted results are compared with measured data of manufactured samples.
文摘Resin flow correction control with electromagnetic field source, a new variation of the vacuum-assisted resin transfer molding (VARTM) process called electromagnetically induced preform resting (EIPR) for dynamical resin flow controlling is introduced to manipulate the flow front and local permeability to prevent the formation of dry spots. This paper proposes an active and real-time flow control approach that is implemented during the composite laminate infusion. The EIPR process applies an electromagnetic field source to pinch (raise) and vibrate the upper flexible mold to rest the fiber preform and increase the local permeability. Vibration action delivers the fluid through the preform. The EIPR process includes a new and creative upper flexible vacuum bag with embedded elements to lift and create local vibrations via an automated gantry system. The control methodology is performed by tracking the flow front with a real-time correction. System capability is demonstrated with three configurations of preform of different preform permeabilities in each experiment. A low permeability preform is employed in these configurations to disturb the flow pattern and cause an artificial problem or pseudo problem during the filling process. The results indicate that this system fills the mold completely and reduces the filling time without any dry spots and therefore creates no waste material.