In this paper we introduce several new similarity measures and distance measures between fuzzy soft sets, these measures are examined based on the set-theoretic approach and the matching function. Comparative studies ...In this paper we introduce several new similarity measures and distance measures between fuzzy soft sets, these measures are examined based on the set-theoretic approach and the matching function. Comparative studies of these measures are derived. By introducing two general formulas, we propose a new method to define the similarity measures and the distance measures between two fuzzy soft sets with different parameter sets.展开更多
Intuitionistic hesitant fuzzy set(IHFS)is amixture of two separated notions called intuitionistic fuzzy set(IFS)and hesitant fuzzy set(HFS),as an important technique to cope with uncertain and awkward information in r...Intuitionistic hesitant fuzzy set(IHFS)is amixture of two separated notions called intuitionistic fuzzy set(IFS)and hesitant fuzzy set(HFS),as an important technique to cope with uncertain and awkward information in realistic decision issues.IHFS contains the grades of truth and falsity in the formof the subset of the unit interval.The notion of IHFS was defined by many scholars with different conditions,which contain several weaknesses.Here,keeping in view the problems of already defined IHFSs,we will define IHFS in another way so that it becomes compatible with other existing notions.To examine the interrelationship between any numbers of IHFSs,we combined the notions of power averaging(PA)operators and power geometric(PG)operators with IHFSs to present the idea of intuitionistic hesitant fuzzy PA(IHFPA)operators,intuitionistic hesitant fuzzy PG(IHFPG)operators,intuitionistic hesitant fuzzy power weighted average(IHFPWA)operators,intuitionistic hesitant fuzzy power ordered weighted average(IHFPOWA)operators,intuitionistic hesitant fuzzy power ordered weighted geometric(IHFPOWG)operators,intuitionistic hesitant fuzzy power hybrid average(IHFPHA)operators,intuitionistic hesitant fuzzy power hybrid geometric(IHFPHG)operators and examined as well their fundamental properties.Some special cases of the explored work are also discovered.Additionally,the similarity measures based on IHFSs are presented and their advantages are discussed along examples.Furthermore,we initiated a new approach to multiple attribute decision making(MADM)problem applying suggested operators and a mathematical model is solved to develop an approach and to establish its common sense and adequacy.Advantages,comparative analysis,and graphical representation of the presented work are elaborated to show the reliability and effectiveness of the presented works.展开更多
In the complexity and indeterminacy of decision making(DM)environments,orthopair neutrosophic number set(ONNS)presented by Ye et al.can be described by the truth and falsity indeterminacy degrees.Then,ONNS demonstrate...In the complexity and indeterminacy of decision making(DM)environments,orthopair neutrosophic number set(ONNS)presented by Ye et al.can be described by the truth and falsity indeterminacy degrees.Then,ONNS demonstrates its advantages in the indeterminate information expression,aggregations,and DM problems with some indeterminate ranges.However,the existing research lacks some similarity measures between ONNSs.They are indispensable mathematical tools and play a crucial role in DM,pattern recognition,and clustering analysis.Thus,it is necessary to propose some similaritymeasures betweenONNSs to supplement the gap.To solve the issue,this study firstly proposes the p-indeterminate cosine measure,p-indeterminate Dice measure,p-indeterminate Jaccard measure of ONNSs(i.e.,the three parameterized indeterminate vector similarity measures of ONNSs)in vector space.Then,a DMmethod based on the parameterized indeterminate vector similarity measures of ONNSs is developed to solve indeterminate multiple attribute DM problems by choosing different indeterminate degrees of the parameter p,such as the small indeterminate degree(p=0)or the moderate indeterminate degree(p=0.5)or the big indeterminate degree(p=1).Lastly,an actual DM example on choosing a suitable logistics supplier is provided to demonstrate the flexibility and practicability of the developed DM approach in indeterminate DM problems.By comparison with existing relative DM methods,the superiority of this study is that the established DMapproach indicates its flexibility and suitability depending on decision makers’indeterminate degrees(decision risks)in ONNS setting.展开更多
Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on th...Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.展开更多
A neutrosophic multi-valued set(NMVS)is a crucial representation for true,false,and indeterminate multivalued information.Then,a consistent single-valued neutrosophic set(CSVNS)can effectively reflect the mean and con...A neutrosophic multi-valued set(NMVS)is a crucial representation for true,false,and indeterminate multivalued information.Then,a consistent single-valued neutrosophic set(CSVNS)can effectively reflect the mean and consistency degree of true,false,and indeterminate multi-valued sequences and solve the operational issues between different multi-valued sequence lengths in NMVS.However,there has been no research on consistent single-valued neutrosophic similarity measures in the existing literature.This paper proposes cotangent similarity measures and weighted cotangent similarity measures between CSVNSs based on cotangent function in the neutrosophic multi-valued setting.The cosine similarity measures showthe cosine of the angle between two vectors projected into amultidimensional space,rather than their distance.The cotangent similaritymeasures in this study can alleviate several shortcomings of cosine similarity measures in vector space to a certain extent.Then,a decisionmaking approach is presented in viewof the established cotangent similarity measures in the case of NMVSs.Finally,the developed decision-making approach is applied to selection problems of potential cars.The proposed approach has obtained two different results,which have the same sort sequence as the compared literature.The decision results prove its validity and effectiveness.Meantime,it also provides a new manner for neutrosophic multi-valued decision-making issues.展开更多
Face recognition systems have been in the active research in the area of image processing for quite a long time. Evaluating the face recognition system was carried out with various types of algorithms used for extract...Face recognition systems have been in the active research in the area of image processing for quite a long time. Evaluating the face recognition system was carried out with various types of algorithms used for extracting the features, their classification and matching. Similarity measure or distance measure is also an important factor in assessing the quality of a face recognition system. There are various distance measures in literature which are widely used in this area. In this work, a new class of similarity measure based on the Lp metric between fuzzy sets is proposed which gives better results when compared to the existing distance measures in the area with Linear Discriminant Analysis (LDA). The result points to a positive direction that with the existing feature extraction methods itself the results can be improved if the similarity measure in the matching part is efficient.展开更多
Let S belong to R^2 be the attractor of the iterated function system {f1, f2, f3 } iterating on the unit equilateral triangle So. where fi(x) =λix + bi, i = 1,2, 3, x =(x1, x2), b1=(0, 0), b3=(1-λ3 /2,√3...Let S belong to R^2 be the attractor of the iterated function system {f1, f2, f3 } iterating on the unit equilateral triangle So. where fi(x) =λix + bi, i = 1,2, 3, x =(x1, x2), b1=(0, 0), b3=(1-λ3 /2,√3/2 (1-λ3)) This paper determines the exact Hausdorff measure, centred covering measure and packing measure of S under some conditions relating to the contraction parameter.展开更多
In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets a...In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets at the contracting-similarity fixed points is given. Next, under the strong separation open set condition, the existence of the best shape for the upper convex densities of self-similar sets at the contracting-similarity fixed points is proven. As consequences, an open problem and a conjecture, which were posed by Zhou and Xu, are answered.展开更多
Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear comb...Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear combination of both common and distinct features. In this paper, an adaptive feature contrast (AdaFC) model is proposed to measure similarity between satellite images for image retrieval. In the AdaFC, an adaptive function is used to model a variable role of distinct features in the similarity measurement. Specifically, given some distinct features in a satellite image, e.g., a COAST image, they might play a significant role when the image is compared with an image including different semantics, e.g., a SEA image, and might be trivial when it is compared with a third image including same semantics, e.g., another COAST image. Experimental results on satellite images show that the proposed model can consistently improve similarity retrieval effectiveness of satellite images including multiple geo-objects, for example COAST images.展开更多
A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theor...A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.展开更多
The paper draws comparison and analysis among present similarity measure methods in the case of similari-ty measures between Vague values, provides a new similarity measure method, of which discusses on the normalchar...The paper draws comparison and analysis among present similarity measure methods in the case of similari-ty measures between Vague values, provides a new similarity measure method, of which discusses on the normalcharacteristics, gives some relative character theorems. At the same time, it analyzes the application of fuzzy similari-ty measures in vague similarity measures and gives its normal forms such as similarity measures between Vague sets,between elements and their weighted similarity measures. Finally, vague entropy rule respectively aiming at twokinds of cases is approached and its corresponding vague entropy expressions is provided. The content of this paper isof practical significance in such fields as fuzzy decision-making, vague clustering, pattern recognition, data miningetc.展开更多
基金Supported by the National Natural Science Foundation of China(6147323961175044) Supported by the Fundamental Research Funds for the Central Universities of China(2682014ZT28)
文摘In this paper we introduce several new similarity measures and distance measures between fuzzy soft sets, these measures are examined based on the set-theoretic approach and the matching function. Comparative studies of these measures are derived. By introducing two general formulas, we propose a new method to define the similarity measures and the distance measures between two fuzzy soft sets with different parameter sets.
基金supported by“Algebra and Applications Research Unit,Division of Computational Science,Faculty of Science,Prince of Songkla University”.
文摘Intuitionistic hesitant fuzzy set(IHFS)is amixture of two separated notions called intuitionistic fuzzy set(IFS)and hesitant fuzzy set(HFS),as an important technique to cope with uncertain and awkward information in realistic decision issues.IHFS contains the grades of truth and falsity in the formof the subset of the unit interval.The notion of IHFS was defined by many scholars with different conditions,which contain several weaknesses.Here,keeping in view the problems of already defined IHFSs,we will define IHFS in another way so that it becomes compatible with other existing notions.To examine the interrelationship between any numbers of IHFSs,we combined the notions of power averaging(PA)operators and power geometric(PG)operators with IHFSs to present the idea of intuitionistic hesitant fuzzy PA(IHFPA)operators,intuitionistic hesitant fuzzy PG(IHFPG)operators,intuitionistic hesitant fuzzy power weighted average(IHFPWA)operators,intuitionistic hesitant fuzzy power ordered weighted average(IHFPOWA)operators,intuitionistic hesitant fuzzy power ordered weighted geometric(IHFPOWG)operators,intuitionistic hesitant fuzzy power hybrid average(IHFPHA)operators,intuitionistic hesitant fuzzy power hybrid geometric(IHFPHG)operators and examined as well their fundamental properties.Some special cases of the explored work are also discovered.Additionally,the similarity measures based on IHFSs are presented and their advantages are discussed along examples.Furthermore,we initiated a new approach to multiple attribute decision making(MADM)problem applying suggested operators and a mathematical model is solved to develop an approach and to establish its common sense and adequacy.Advantages,comparative analysis,and graphical representation of the presented work are elaborated to show the reliability and effectiveness of the presented works.
文摘In the complexity and indeterminacy of decision making(DM)environments,orthopair neutrosophic number set(ONNS)presented by Ye et al.can be described by the truth and falsity indeterminacy degrees.Then,ONNS demonstrates its advantages in the indeterminate information expression,aggregations,and DM problems with some indeterminate ranges.However,the existing research lacks some similarity measures between ONNSs.They are indispensable mathematical tools and play a crucial role in DM,pattern recognition,and clustering analysis.Thus,it is necessary to propose some similaritymeasures betweenONNSs to supplement the gap.To solve the issue,this study firstly proposes the p-indeterminate cosine measure,p-indeterminate Dice measure,p-indeterminate Jaccard measure of ONNSs(i.e.,the three parameterized indeterminate vector similarity measures of ONNSs)in vector space.Then,a DMmethod based on the parameterized indeterminate vector similarity measures of ONNSs is developed to solve indeterminate multiple attribute DM problems by choosing different indeterminate degrees of the parameter p,such as the small indeterminate degree(p=0)or the moderate indeterminate degree(p=0.5)or the big indeterminate degree(p=1).Lastly,an actual DM example on choosing a suitable logistics supplier is provided to demonstrate the flexibility and practicability of the developed DM approach in indeterminate DM problems.By comparison with existing relative DM methods,the superiority of this study is that the established DMapproach indicates its flexibility and suitability depending on decision makers’indeterminate degrees(decision risks)in ONNS setting.
文摘Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.
文摘A neutrosophic multi-valued set(NMVS)is a crucial representation for true,false,and indeterminate multivalued information.Then,a consistent single-valued neutrosophic set(CSVNS)can effectively reflect the mean and consistency degree of true,false,and indeterminate multi-valued sequences and solve the operational issues between different multi-valued sequence lengths in NMVS.However,there has been no research on consistent single-valued neutrosophic similarity measures in the existing literature.This paper proposes cotangent similarity measures and weighted cotangent similarity measures between CSVNSs based on cotangent function in the neutrosophic multi-valued setting.The cosine similarity measures showthe cosine of the angle between two vectors projected into amultidimensional space,rather than their distance.The cotangent similaritymeasures in this study can alleviate several shortcomings of cosine similarity measures in vector space to a certain extent.Then,a decisionmaking approach is presented in viewof the established cotangent similarity measures in the case of NMVSs.Finally,the developed decision-making approach is applied to selection problems of potential cars.The proposed approach has obtained two different results,which have the same sort sequence as the compared literature.The decision results prove its validity and effectiveness.Meantime,it also provides a new manner for neutrosophic multi-valued decision-making issues.
文摘Face recognition systems have been in the active research in the area of image processing for quite a long time. Evaluating the face recognition system was carried out with various types of algorithms used for extracting the features, their classification and matching. Similarity measure or distance measure is also an important factor in assessing the quality of a face recognition system. There are various distance measures in literature which are widely used in this area. In this work, a new class of similarity measure based on the Lp metric between fuzzy sets is proposed which gives better results when compared to the existing distance measures in the area with Linear Discriminant Analysis (LDA). The result points to a positive direction that with the existing feature extraction methods itself the results can be improved if the similarity measure in the matching part is efficient.
基金the Foundation of National Natural Science Committee of Chinathe Foundation of the Natural Science of Guangdong Provincethe Foundation of the Advanced Research Center of zhongshan University
文摘Let S belong to R^2 be the attractor of the iterated function system {f1, f2, f3 } iterating on the unit equilateral triangle So. where fi(x) =λix + bi, i = 1,2, 3, x =(x1, x2), b1=(0, 0), b3=(1-λ3 /2,√3/2 (1-λ3)) This paper determines the exact Hausdorff measure, centred covering measure and packing measure of S under some conditions relating to the contraction parameter.
基金partially supported by the foundation of the research item of Strong Department of Engineering Innovation, which is sponsored by the Strong School of Engineering Innovation of Hanshan Normal University, China, 2013partially supported by National Natural Science Foundation of China (No. 11371379)
文摘In this paper, some results on the upper convex densities of self-similar sets at the contracting-similarity fixed points are discussed. Firstly, a characterization of the upper convex densities of self-similar sets at the contracting-similarity fixed points is given. Next, under the strong separation open set condition, the existence of the best shape for the upper convex densities of self-similar sets at the contracting-similarity fixed points is proven. As consequences, an open problem and a conjecture, which were posed by Zhou and Xu, are answered.
文摘Similarity measurement is one of key operations to retrieve “desired” images from an image database. As a famous psychological similarity measure approach, the Feature Contrast (FC) model is defined as a linear combination of both common and distinct features. In this paper, an adaptive feature contrast (AdaFC) model is proposed to measure similarity between satellite images for image retrieval. In the AdaFC, an adaptive function is used to model a variable role of distinct features in the similarity measurement. Specifically, given some distinct features in a satellite image, e.g., a COAST image, they might play a significant role when the image is compared with an image including different semantics, e.g., a SEA image, and might be trivial when it is compared with a third image including same semantics, e.g., another COAST image. Experimental results on satellite images show that the proposed model can consistently improve similarity retrieval effectiveness of satellite images including multiple geo-objects, for example COAST images.
文摘A novel model termed a bipolar complex fuzzy N-soft set(BCFN-SS)is initiated for tackling information that involves positive and negative aspects,the second dimension,and parameterised grading simultaneously.The theory of BCFN-SS is the generalisation of two various theories,that is,bipolar complex fuzzy(BCF)and N-SS.The invented model of BCFN-SS helps decision-makers to cope with the genuine-life dilemmas containing BCF information along with parameterised grading at the same time.Further,various algebraic operations,including the usual type of union,intersection,complements,and a few others types,are invented.Certain primary operational laws for BCFNSS are also invented.Moreover,a technique for order preference by similarity to the ideal solution(TOPSIS)approach is devised in the setting of BCFN-SS for managing strategic decision-making(DM)dilemmas containing BCFN-SS information.Keeping in mind the usefulness and benefits of the TOPSIS approach,two various types of TOPSIS approaches in the environment of BCFN-SS are devised and then a numerical example for exposing the usefulness of the devised TOPSIS approach is interpreted.To disclose the prominence and benefits of the devised work,the devised approaches with numerous prevailing work are compared.
文摘The paper draws comparison and analysis among present similarity measure methods in the case of similari-ty measures between Vague values, provides a new similarity measure method, of which discusses on the normalcharacteristics, gives some relative character theorems. At the same time, it analyzes the application of fuzzy similari-ty measures in vague similarity measures and gives its normal forms such as similarity measures between Vague sets,between elements and their weighted similarity measures. Finally, vague entropy rule respectively aiming at twokinds of cases is approached and its corresponding vague entropy expressions is provided. The content of this paper isof practical significance in such fields as fuzzy decision-making, vague clustering, pattern recognition, data miningetc.