The carbon-13 nuclear magnetic resonance spectra of seventeen protoilludane ses- quiterpenoid aromatic esters from the artificially cultured mycelium of Armillaria mellea (Vahl.ex Fr.) Quel.have been analysed and assi...The carbon-13 nuclear magnetic resonance spectra of seventeen protoilludane ses- quiterpenoid aromatic esters from the artificially cultured mycelium of Armillaria mellea (Vahl.ex Fr.) Quel.have been analysed and assigned.All the ^(11)CNMR signals of the model compounds melleolide 5 and compounds 8,10,11,13,14,15,and 16 can be assigned on the basis of the multiplicity of the sig- nals in the off-resonance decoupled spectra or INEPT spectra.^(11)C-~1H COSY and long-range ^(13)C-~1H COSY.The assignments of the ^(13)CNMR spectra of other protoilludane sesquiterpenoid aromatic esters were completed by comparison with the model compounds as well as the electronic effects of substi- tuted group on the molecules.The present results indicate that ^(11)CNMR spectroscopy provides an ef- fective method for characterizing the protoilludane sesquiterpenoid aromatic esters.展开更多
文摘The carbon-13 nuclear magnetic resonance spectra of seventeen protoilludane ses- quiterpenoid aromatic esters from the artificially cultured mycelium of Armillaria mellea (Vahl.ex Fr.) Quel.have been analysed and assigned.All the ^(11)CNMR signals of the model compounds melleolide 5 and compounds 8,10,11,13,14,15,and 16 can be assigned on the basis of the multiplicity of the sig- nals in the off-resonance decoupled spectra or INEPT spectra.^(11)C-~1H COSY and long-range ^(13)C-~1H COSY.The assignments of the ^(13)CNMR spectra of other protoilludane sesquiterpenoid aromatic esters were completed by comparison with the model compounds as well as the electronic effects of substi- tuted group on the molecules.The present results indicate that ^(11)CNMR spectroscopy provides an ef- fective method for characterizing the protoilludane sesquiterpenoid aromatic esters.