The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ...The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.展开更多
Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant...Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.展开更多
Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption...Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.展开更多
The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD...The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD),and problems with searching the CSD file for Tl complexes are discussed.The recommended R0 values for Tl(Ⅰ)-O of 2.162 ,Tl(Ⅲ)-O of 2.016 ,Tl(Ⅰ)-N of 2.286 ?,and for Tl(Ⅲ)-N of 2.014 used with b = 0.37 were derived from analyses of homoleptic Tl-O,Tl-N,and heteroleptic Tl-O and-N metal organic complexes.These R0 values can be used to assign correctly the oxidation state of Tl in complexes containing any combination of Tl-O or Tl-N bonds.Examples of questionable oxidation states for Tl complexes are given.The R0 value for Tl(Ⅲ)-Cl of 2.300 was also determined.展开更多
Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this...Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this strategy in combination with femtosecond time-resolved photoelectron imaging. The dark Rydberg S1 and bright valence S2 states are simultaneously excited by two photons of 405 nm, and then ionized by two photons of 800nm. The IC from S2 to S1 is clearly observed and extracted from the time dependence of the higher photoelectron kinetic energy (PKE) component. More importantly, the internal conversions to hot So from directly-prepared S1 and secondarily-populated S1 are unambiguously identified by the time-dependence of the lower PKE component. The average lifetime of the S2 and S1 states is measured to be 29 fs. The internal conversions of S2 to S1, S1 to hot So occur on estimated timescales of 15.4 fs and 38 fs, respectively.展开更多
Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conform...Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.展开更多
It is well-known that the United States,a highly developed country whether in high-tech.or higher education,is in a leading position in the world.Based on the comparison and analysis of higher education between China ...It is well-known that the United States,a highly developed country whether in high-tech.or higher education,is in a leading position in the world.Based on the comparison and analysis of higher education between China and the U.S.,this article highly affirms the advantages of American higher education,offers an objective comment on China's higher education reform in recent years,and earnestly indicates that China's higher education needs to be improved in order to facilitate greater development.展开更多
Copper(Cu)is extensively employed in photocatalytic CO_(2)reduction reactions for the production of high-value products.The valence state of transition metals plays a pivotal role in influencing the catalytic process....Copper(Cu)is extensively employed in photocatalytic CO_(2)reduction reactions for the production of high-value products.The valence state of transition metals plays a pivotal role in influencing the catalytic process.However,due to the complex valence state changes of Cu in the CO_(2)reduction reaction,research on its valence state effect is lacking.The current work is to prepare a series of TiO_(2)/CuX with stable Cu valence composition using different copper halides(CuX and CuX_(2),X=Br or Cl)as precursors.The results show that the CuBr_(2)loading leads to Cu^(+)/Cu^(2+) mixed cocatalyst and exhibits the highest activity for CO_(2)photoreduction.The CH4 evolution rate of the TiO_(2)/CuBr_(2)catalyst is as high as 100.59μmol h^(-1)g^(-1),which is 6.6 times that of pristine TiO_(2).The CH4 selectivity reaches 77%.The enhanced catalytic activity and selectivity can be ascribed to the efficient surface adsorption,activation,excellent carrier separation,and transfer ofCu^(+)/Cu^(2+) mixed cocatalyst.Our findings provide a reference for designing highly active Cu-based photocatalysts.展开更多
Electrical and electronic waste(e-waste)is a growing challenge,matching the widespread boom in the use of information and communication technology.Opposite to an alarming increasing amount of e-waste,a low rate of con...Electrical and electronic waste(e-waste)is a growing challenge,matching the widespread boom in the use of information and communication technology.Opposite to an alarming increasing amount of e-waste,a low rate of consumer engagement in ensuring the proper disposal of such materials intensifies the pressure on the exist‐ing e-waste crisis.To deal with this thorny problem,it is of great interest to grasp consumers’disposal and re‐cycling behavioral intentions.Therefore,this study attempts to understand complementary perspectives around consumers’e-waste recycling intention based on the integration of the valence theory and the norm activation theory.Four data mining models using classification and prediction-based algorithms,namely Chi squared automatic interaction detector(CHAID),Neural network,Discriminant analysis,and Quick,unbiased,efficient statistical tree(QUEST),were employed to analyze a set of the 398 data collected in Vietnam.The re‐sults revealed that the social support value is by far the most critical predictor,followed by the utilitarian value,task difficulty,and monetary risk.It is also noteworthy that the awareness of consequences,education background,the ascription of responsibility,and age were also ranked as critical affecting factors.The lowest influential predictors found in this study were income and gender.In addition,a comparison was made in terms of the classification performance of the four utilized data mining techniques.Based on several evalua‐tion measurements(confusion matrix,accuracy,precision,recall,specificity,F-measure,ROC curve,and AUC),the aggregated results suggested that CHAID and Neural network performed the best.The findings of this research are expected to assist policymakers and future researchers in updating all information surround‐ing consumer behavioral intention-related topics focusing on e-waste.Furthermore,the adoption of data min‐ing algorithms for prediction is another insight of this study,which may shed the light on data mining applica‐tions in such environmental studies in the future.展开更多
We present an efficient scheme for the complete analysis of hyperentangled Greenberger–Horne–Zeilinger(GHZ)state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is...We present an efficient scheme for the complete analysis of hyperentangled Greenberger–Horne–Zeilinger(GHZ)state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is distinguished completely and nondestructively, resorting to the controlled phase flip(CPF) gate constructed by the cavity-assisted interaction. Subsequently, the time-bin GHZ state is analyzed by using the preserved polarization entanglement. With the help of CPF gate and self-assisted mechanism, our scheme can be directly generalized to the complete N-photon hyperentangled GHZ state analysis, and it may have potential applications in the hyperentanglement-based quantum communication.展开更多
新能源产业的飞速发展使磷酸铁锂电池广泛应用于储能领域。磷酸铁锂电池电解液固有的可燃性使其热稳定性和安全性问题不容忽视。为了更好地防控储能电站的爆炸事故,有必要开展储能电池的热失控过程研究,并对产气过程和产气组分的危害性...新能源产业的飞速发展使磷酸铁锂电池广泛应用于储能领域。磷酸铁锂电池电解液固有的可燃性使其热稳定性和安全性问题不容忽视。为了更好地防控储能电站的爆炸事故,有必要开展储能电池的热失控过程研究,并对产气过程和产气组分的危害性进行深入分析。开展了不同荷电状态(State of Charge, SOC)60 Ah磷酸铁锂电池热失控试验,根据电池温度演变曲线,将电池热失控过程分成三个阶段;依据电池产气曲线,将电池产气过程分为四个阶段;使用FLACS软件建模对预混气体进行了爆炸仿真,探索了SOC对可燃气体燃爆行为的影响规律,混合可燃气体的爆炸上下限和爆炸超压随着SOC的增大而增大。研究成果对储能电站的安全防护具有理论指导意义。展开更多
This paper studies the deterioration of bridge substructures utilizing the Long-Term Bridge Performance(LTBP)Program InfoBridge^(TM)and develops a survival model using Cox proportional hazards regression.The survival ...This paper studies the deterioration of bridge substructures utilizing the Long-Term Bridge Performance(LTBP)Program InfoBridge^(TM)and develops a survival model using Cox proportional hazards regression.The survival analysis is based on the National Bridge Inventory(NBI)dataset.The study calculates the survival rate of reinforced and prestressed concrete piles on bridges under marine conditions over a 29-year span(from 1992 to 2020).The state of Maryland is the primary focus of this study,with data from three neighboring regions,the District of Columbia,Virginia,and Delaware to expand the sample size.The data obtained from the National Bridge Inventory are condensed and filtered to acquire the most relevant information for model development.The Cox proportional hazards regression is applied to the condensed NBI data with six parameters:Age,ADT,ADTT,number of spans,span length,and structural length.Two survival models are generated for the bridge substructures:Reinforced and prestressed concrete piles in Maryland and reinforced and prestressed concrete piles in wet service conditions in the District of Columbia,Maryland,Delaware,and Virginia.Results from the Cox proportional hazards regression are used to construct Markov chains to demonstrate the sequence of the deterioration of bridge substructures.The Markov chains can be used as a tool to assist in the prediction and decision-making for repair,rehabilitation,and replacement of bridge piles.Based on the numerical model,the Pile Assessment Matrix Program(PAM)is developed to facilitate the assessment and maintenance of current bridge structures.The program integrates the NBI database with the inspection and research reports from various states’department of transportation,to serve as a tool for condition state simulation based on maintenance or rehabilitation strategies.展开更多
基金funding support from the National Key Research and Development Program of China(Grant No.2023YFB2604004)the National Natural Science Foundation of China(Grant No.52108374)the“Taishan”Scholar Program of Shandong Province,China(Grant No.tsqn201909016)。
文摘The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers.
文摘Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.
基金supported by the Fundamental Research Funds for the Central Universities(FRF-EYIT-23-07)。
文摘Ammonia(NH3)serves as a critical component in the fertilizer industry and fume gas denitrification.However,the conventional NH3production process,namely the Haber-Bosch process,leads to considerable energy consumption and waste gas emissions.To address this,electrocatalytic nitric oxide reduction reaction(NORR)has emerged as a promising strategy to bridge NH3consumption to NH3production,harnessing renewable electricity for a sustainable future.Copper(Cu)stands out as a prominent electrocatalyst for NO reduction,given its exceptional NH3yield and selectivity.However,a crucial aspect that remains insufficiently explored is the effects of morphology and valence states of Cu on the NORR performance.In this investigation,we synthesized CuO nanowires(CuO-NF)and Cu nanocubes(Cu-NF)as cathodes through an in situ growth method.Remarkably,CuO-NF exhibited an impressive NH3yield of 0.50±0.02 mg cm^(-2)h^(-1)at-0.6 V vs.reversible hydrogen electrode(RHE)with faradaic efficiency of29,68%±1,35%,surpassing that of Cu-NF(0.17±0.01 mg cm^(-2)h^(-1),16.18%±1.40%).Throughout the electroreduction process,secondary cubes were generated on the CuO-NF surface,preserving their nanosheet cluster morphology,sustained by an abundant supply of subsurface oxygen(s-O)even after an extended duration of 10 h,until s-O depletion ensued.Conversely,Cu-NF exhibited inadequate s-O content,leading to rapid crystal collapse within the same timeframe.The distinctive current-potential relationship,akin to a volcano-type curve,was attributed to distinct NO hydrogenation mechanisms.Further Tafel analysis revealed the exchange current density(i0)and standard heterogeneous rate constant(k0)for CuO-NF,yielding 3.44×10^(-6)A cm^(-2)and 3.77×10^(-6)cm^(-2)s^(-1)when NORR was driven by overpotentials.These findings revealed the potential of CuO-NF for NO reduction and provided insights into the intricate interplay between crystal morphology,valence states,and electrochemical performance.
文摘The influence of the lone pair of electrons in thallium complexes is analyzed using the bond valence sum method.Bond length data for metal-organic Tl complexes were obtained from the Cambridge Structural Database(CSD),and problems with searching the CSD file for Tl complexes are discussed.The recommended R0 values for Tl(Ⅰ)-O of 2.162 ,Tl(Ⅲ)-O of 2.016 ,Tl(Ⅰ)-N of 2.286 ?,and for Tl(Ⅲ)-N of 2.014 used with b = 0.37 were derived from analyses of homoleptic Tl-O,Tl-N,and heteroleptic Tl-O and-N metal organic complexes.These R0 values can be used to assign correctly the oxidation state of Tl in complexes containing any combination of Tl-O or Tl-N bonds.Examples of questionable oxidation states for Tl complexes are given.The R0 value for Tl(Ⅲ)-Cl of 2.300 was also determined.
基金Supported by the National Natural Science Foundation of China under Grant Nos 21303255,21273274 and 91121006
文摘Two-photon absorption in systems with parity permits access to states that cannot be directly prepared by one-photon absorption. Here we investigate ultrafast internal conversion (IC) dynamics of furan by using this strategy in combination with femtosecond time-resolved photoelectron imaging. The dark Rydberg S1 and bright valence S2 states are simultaneously excited by two photons of 405 nm, and then ionized by two photons of 800nm. The IC from S2 to S1 is clearly observed and extracted from the time dependence of the higher photoelectron kinetic energy (PKE) component. More importantly, the internal conversions to hot So from directly-prepared S1 and secondarily-populated S1 are unambiguously identified by the time-dependence of the lower PKE component. The average lifetime of the S2 and S1 states is measured to be 29 fs. The internal conversions of S2 to S1, S1 to hot So occur on estimated timescales of 15.4 fs and 38 fs, respectively.
文摘Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.
文摘It is well-known that the United States,a highly developed country whether in high-tech.or higher education,is in a leading position in the world.Based on the comparison and analysis of higher education between China and the U.S.,this article highly affirms the advantages of American higher education,offers an objective comment on China's higher education reform in recent years,and earnestly indicates that China's higher education needs to be improved in order to facilitate greater development.
基金supported by the National Natural Science Foundation of China(51802171,52072197)Youth Innovation and Technology Foundation of Shandong Higher Education Institutions,China(2019KJC004)Major Scientific and Technological Innovation Project(2019JZZY020405).
文摘Copper(Cu)is extensively employed in photocatalytic CO_(2)reduction reactions for the production of high-value products.The valence state of transition metals plays a pivotal role in influencing the catalytic process.However,due to the complex valence state changes of Cu in the CO_(2)reduction reaction,research on its valence state effect is lacking.The current work is to prepare a series of TiO_(2)/CuX with stable Cu valence composition using different copper halides(CuX and CuX_(2),X=Br or Cl)as precursors.The results show that the CuBr_(2)loading leads to Cu^(+)/Cu^(2+) mixed cocatalyst and exhibits the highest activity for CO_(2)photoreduction.The CH4 evolution rate of the TiO_(2)/CuBr_(2)catalyst is as high as 100.59μmol h^(-1)g^(-1),which is 6.6 times that of pristine TiO_(2).The CH4 selectivity reaches 77%.The enhanced catalytic activity and selectivity can be ascribed to the efficient surface adsorption,activation,excellent carrier separation,and transfer ofCu^(+)/Cu^(2+) mixed cocatalyst.Our findings provide a reference for designing highly active Cu-based photocatalysts.
文摘Electrical and electronic waste(e-waste)is a growing challenge,matching the widespread boom in the use of information and communication technology.Opposite to an alarming increasing amount of e-waste,a low rate of consumer engagement in ensuring the proper disposal of such materials intensifies the pressure on the exist‐ing e-waste crisis.To deal with this thorny problem,it is of great interest to grasp consumers’disposal and re‐cycling behavioral intentions.Therefore,this study attempts to understand complementary perspectives around consumers’e-waste recycling intention based on the integration of the valence theory and the norm activation theory.Four data mining models using classification and prediction-based algorithms,namely Chi squared automatic interaction detector(CHAID),Neural network,Discriminant analysis,and Quick,unbiased,efficient statistical tree(QUEST),were employed to analyze a set of the 398 data collected in Vietnam.The re‐sults revealed that the social support value is by far the most critical predictor,followed by the utilitarian value,task difficulty,and monetary risk.It is also noteworthy that the awareness of consequences,education background,the ascription of responsibility,and age were also ranked as critical affecting factors.The lowest influential predictors found in this study were income and gender.In addition,a comparison was made in terms of the classification performance of the four utilized data mining techniques.Based on several evalua‐tion measurements(confusion matrix,accuracy,precision,recall,specificity,F-measure,ROC curve,and AUC),the aggregated results suggested that CHAID and Neural network performed the best.The findings of this research are expected to assist policymakers and future researchers in updating all information surround‐ing consumer behavioral intention-related topics focusing on e-waste.Furthermore,the adoption of data min‐ing algorithms for prediction is another insight of this study,which may shed the light on data mining applica‐tions in such environmental studies in the future.
文摘We present an efficient scheme for the complete analysis of hyperentangled Greenberger–Horne–Zeilinger(GHZ)state in polarization and time-bin degrees of freedom with two steps. Firstly, the polarization GHZ state is distinguished completely and nondestructively, resorting to the controlled phase flip(CPF) gate constructed by the cavity-assisted interaction. Subsequently, the time-bin GHZ state is analyzed by using the preserved polarization entanglement. With the help of CPF gate and self-assisted mechanism, our scheme can be directly generalized to the complete N-photon hyperentangled GHZ state analysis, and it may have potential applications in the hyperentanglement-based quantum communication.
文摘新能源产业的飞速发展使磷酸铁锂电池广泛应用于储能领域。磷酸铁锂电池电解液固有的可燃性使其热稳定性和安全性问题不容忽视。为了更好地防控储能电站的爆炸事故,有必要开展储能电池的热失控过程研究,并对产气过程和产气组分的危害性进行深入分析。开展了不同荷电状态(State of Charge, SOC)60 Ah磷酸铁锂电池热失控试验,根据电池温度演变曲线,将电池热失控过程分成三个阶段;依据电池产气曲线,将电池产气过程分为四个阶段;使用FLACS软件建模对预混气体进行了爆炸仿真,探索了SOC对可燃气体燃爆行为的影响规律,混合可燃气体的爆炸上下限和爆炸超压随着SOC的增大而增大。研究成果对储能电站的安全防护具有理论指导意义。
基金This research receives funding from the Maryland Department of Transportation State Highway Administration.
文摘This paper studies the deterioration of bridge substructures utilizing the Long-Term Bridge Performance(LTBP)Program InfoBridge^(TM)and develops a survival model using Cox proportional hazards regression.The survival analysis is based on the National Bridge Inventory(NBI)dataset.The study calculates the survival rate of reinforced and prestressed concrete piles on bridges under marine conditions over a 29-year span(from 1992 to 2020).The state of Maryland is the primary focus of this study,with data from three neighboring regions,the District of Columbia,Virginia,and Delaware to expand the sample size.The data obtained from the National Bridge Inventory are condensed and filtered to acquire the most relevant information for model development.The Cox proportional hazards regression is applied to the condensed NBI data with six parameters:Age,ADT,ADTT,number of spans,span length,and structural length.Two survival models are generated for the bridge substructures:Reinforced and prestressed concrete piles in Maryland and reinforced and prestressed concrete piles in wet service conditions in the District of Columbia,Maryland,Delaware,and Virginia.Results from the Cox proportional hazards regression are used to construct Markov chains to demonstrate the sequence of the deterioration of bridge substructures.The Markov chains can be used as a tool to assist in the prediction and decision-making for repair,rehabilitation,and replacement of bridge piles.Based on the numerical model,the Pile Assessment Matrix Program(PAM)is developed to facilitate the assessment and maintenance of current bridge structures.The program integrates the NBI database with the inspection and research reports from various states’department of transportation,to serve as a tool for condition state simulation based on maintenance or rehabilitation strategies.