This paper describes valley bottom troughs of the Changjiang River and infers the geomorphologic development of troughs. Based on the morphology of the troughs, the following conclusions are drawn. (1) The deep trough...This paper describes valley bottom troughs of the Changjiang River and infers the geomorphologic development of troughs. Based on the morphology of the troughs, the following conclusions are drawn. (1) The deep troughs on the Three Gorges valley bottom are formed by river downcutting along the structural zones on the background of regional tectonic uplift at about 40-30 ka BP. (2) When river downcutting occurred in the river bed of Changjiang, the jets current (particularly eddy current) with a large number of pebbles ground and eroded the valley bottom, resulting in trough formation and deepening. Meanwhile, water currents with gravels and pebbles eroded the bank and the left wall of No.76 trough as well as the right wall of No.77 trough by striking, scouring, horizontal and vertical grinding. (3) The depth of the trough is mainly determined by the intensity of the water current and the consistency of bedrock against erosion, and is not controlled by the altitude of the sea level as the base level of erosion.展开更多
With the aim of finding the geochemical differences and helping to build alleviating strategies against iron toxicity, two hematite dominant valley bottoms irrigating rice soils were investigated in the Tropical Savan...With the aim of finding the geochemical differences and helping to build alleviating strategies against iron toxicity, two hematite dominant valley bottoms irrigating rice soils were investigated in the Tropical Savannah region of Burkina Faso. The first site was Tiefora, a 15-ha modern double-season irrigated rice system and moderately affected by iron toxicity (10% of the area with a toxicity score of 4). The second site was Moussodougou, a 35-ha traditional singleseason irrigated rice valley-bottom, with 50% facing more severe iron toxicity (score 7). Nine soil extracts were taken from three depths—30, 50 and 100 cm—i.e. 27 at Tiefora and 27 at Moussodogou. Five techniques were used to measure the data: 1) the ferrous iron concentration was determined using a reflectometer, 2) a pH-meter yielded the pH, 3) clay-proportions were obtained by United States Department of Agriculture (USDA) grain size analysis and densitometry, 4) the organic matter was determined by oven drying (900℃) and v) the dry bulk density was determined by using undisturbed soil samples. Statistical hypothesis testing of One-way ANOVA and Welch t-test was applied to the data to isolate the similarities and the differences between the two sites. A geochemical analysis followed to find the causes of these differences. The results showed that while oxidation of pyrite leads to a simultaneous increase in Fe2+ concentrations and acidity in the soils of coastal floodplains and mangroves, the oxidation of hematite in Tropical savannah valley bottoms decreases Fe2+ but also increases acidity during the dry season. As a consequence, it was found that the single-season irrigation scheme Moussodougou is significantly (p-value 0.4%) more acidic (pH 5.7) than the double-season system of Tiefora (6.4) with also 750 - 1800 mg/l higher ferrous Fe2+. The ferrous iron reached 3000 mg/l in some layers in Moussodougou. This result is a justification to modernize a traditional single-season spate irrigation schemes into a double-season irrigated rice scheme.展开更多
The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide dist...The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide distribution and the lithotectonic regime of Darma Valley,Kumaun Himalaya.A landslide inventory comprising 295 landslides in the area has been prepared and several morphotectonic proxies such as valley floor width to height ratio(Vf),stream length gradient index(SL),and hypsometric integral(HI)have been used to infer tectonic regime.Morphometric analysis,including basic,linear,aerial,and relief aspects,of 59 fourth-order sub-basins,has been carried out to estimate erosion potential in the study area.The result demonstrates that 46.77%of the landslides lie in very high,20.32%in high,21.29%in medium,and 11.61%in low erosion potential zones respectively.In order to determine the key parameters controlling erosion potential,two multivariate statistical methods namely Principal Component Analysis(PCA)and Agglomerative Hierarchical Clustering(AHC)were utilized.PCA reveals that the Higher Himalayan Zone(HHZ)has the highest erosion potential due to the presence of elongated sub-basins characterized by steep slopes and high relief.The clusters created through AHC exhibit positive PCA values,indicating a robust correlation between PCA and AHC.Furthermore,the landslide density map shows two major landslide hotspots.One of these hotspots lies in the vicinity of highly active Munsiyari Thrust(MT),while the other is in the Pandukeshwar formation within the MT's hanging wall,characterized by a high exhumation rate.High SL and low Vf values along these hotspots further corroborate that the occurrence of landslides in the study area is influenced by tectonic activity.This study,by identifying erosionprone areas and elucidating the implications of tectonic activity on landslide distribution,empowers policymakers and government agencies to develop strategies for hazard assessment and effective landslide risk mitigation,consequently safeguarding lives and communities.展开更多
Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observati...Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 kin) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the de- ployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10mab basically flow along slope and in the layers above the 10mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ek- man layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.展开更多
Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (P...Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However, with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.展开更多
The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectron...The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them.展开更多
Inner edge state with spin and valley degrees of freedom is a promising candidate for designing a dissipationless device due to the topological protection. The central challenge for the application of the inner edge s...Inner edge state with spin and valley degrees of freedom is a promising candidate for designing a dissipationless device due to the topological protection. The central challenge for the application of the inner edge state is to generate and modulate the polarized currents. In this work, we discover a new mechanism to generate fully valley-and spin–valley-polarized current caused by the Bloch wavevector mismatch(BWM). Based on this mechanism, we design some serial-typed inner-edge filters. By using once of the BWM, the coincident states could be divided into transmitted and reflected modes, which can serve as a valley or spin–valley filter. In particular, while with twice of the BWM, the incident current is absolutely reflected to support an off state with a specified valley and spin, which is different from the gap effect.These findings give rise to a new platform for designing valleytronics and spin-valleytronics.展开更多
In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in th...In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.展开更多
The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted t...The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics.展开更多
Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure an...Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.展开更多
Topological zero-line modes(ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spinvalley transport, which support a platform for exploring quantum transport physics and potential applications...Topological zero-line modes(ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spinvalley transport, which support a platform for exploring quantum transport physics and potential applications in spintronic/valleytronic devices. In this work, we investigate the beam-splitting behaviors of the charge current due to the ZLMs in a three-terminal system. We show that with certain combinations of ZLMs, the incident charge current along the interface between different topological phases can be divided into different polarized currents with unit transmittance in two outgoing terminals. As a result, fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters are generated. The mechanism of these splitters is attributed to the cooperative effects of the distribution of the ZLMs and the intervalley and intravalley scatterings that are modulated by the wave-vector mismatch and group velocity mismatch. Interestingly, half-quantized transmittance of these scatterings is found in a fully spin-valley-polarized electron beam splitter.Furthermore, the results indicate that these splitters can be applicable to graphene, silicene, germanene and stanene due to their robustness against the spin–orbit coupling. Our findings offer a new way to understand the transport mechanism and investigate the promising applications of ZLMs.展开更多
Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley...Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.展开更多
Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated ...Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.展开更多
Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through A...Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T_(3) lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.展开更多
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru...We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.展开更多
Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow ligh...Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.展开更多
Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studi...Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studied, Kekulé distorted graphene has emerged as a promising material for valleytronics applications. Graphene can be artificially distorted to form the Kekulé structures rendering the valley-related interaction. In this work, we review the recent progress of research on Kekulé structures of graphene and focus on the modified electronic bands due to different Kekulé distortions as well as their effects on the transport properties of electrons. We systematically discuss how the valley-related interaction in the Kekulé structures was used to control and affect the valley transport including the valley generation, manipulation, and detection. This article summarizes the current challenges and prospects for further research on Kekulé distorted graphene and its potential applications in valleytronics.展开更多
Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and less...Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and lessen or stop the spread of zoonotic diseases to humans. Animal vaccines that are both safe and efficacious are vital to modern culture. The vaccine should induce a strong, protective and prolonged immune response against the antigenic factor. In order to achieve these goals, novel vaccination techniques and an efficient adjuvant are required to render the vaccine immunogenically protective and trigger a strong immune response. Aim: Our study aims to promote and enhance the immunogenicity against RVF virus disease through lyophilized inactivated RVF vaccine through induction of early cellular, high and prolonged humeral immunity in vaccinated animals using cabopol as stabilizer and Saponin or normal saline as a diluent at time of vaccination. Moreover, manufacturing of these vaccines is easy to be done. Results: The gained results revealed that RVF freeze-dried vaccine with Carbopol that reconstituted using Saponin elicited better immune response than that reconstituted using normal saline (NaCl). The cell mediated immune response as represented by lymphocyte blastogenesis and phagocytic activity were markedly increased with high levels when we used Saponin as a diluent than that in group vaccinated with vaccine diluted with NaCl, on the other side the humeral immune response in group vaccinated using the Saponin as diluent is more detected and stayed within the protective level till the end of 11<sup>th</sup> month post vaccination (1.5 TCID<sub>50</sub>) while the immune response induced after using normal saline as a diluent stayed within the protective level till the end of 10<sup>th</sup> month post vaccination (1.8 TCID<sub>50</sub>). Conclusion: The use of Saponin as a diluent for reconstitution of the freeze dried RVF vaccine is preferable than the use of normal saline enhancing both sheep cellular and humeral immune response.展开更多
A new glacial history paradigm that describes huge and prolonged southwest-oriented meltwater floods flowing along the rising rim of a deep “hole” (which a large continental icesheet created and occupied) is used to...A new glacial history paradigm that describes huge and prolonged southwest-oriented meltwater floods flowing along the rising rim of a deep “hole” (which a large continental icesheet created and occupied) is used to explain previously unexplained or poorly explained central Pennsylvania Bald Eagle through valley region topographic map evidence. Pennsylvania’s Bald Eagle through valley as defined here extends in a northeast direction from near Altoona to near Williamsport along the Allegheny Front escarpment base and forms the boundary between the Appalachian Plateau to the northwest and the Ridge and Valley Province to the southeast. The Lycoming and Towanda Creek valleys follow a probable northeastern Bald Eagle through valley extension and a probable southern extension continues southward along the Allegheny Front base by crossing Juniata River tributary drainage basins to reach the Potomac River drainage basin. Landform features identified on topographic maps, which include through valleys (valleys crossing drainage divides), barbed tributaries, drainage route orientations, drainage route direction changes, water gaps, and gaps located along the Allegheny Front crest, are used to reconstruct how the Pennsylvania Susquehanna and Juniata River drainage systems developed. The resulting geomorphic history describes how massive southwest-oriented floods moving across what was probably a low relief and rising surface (now preserved if preserved at all by the region’s highest elevations) flowed to an actively eroding Potomac River drainage system before being captured and sometimes reversed first by Juniata River valley headward erosion, second by West Branch Susquehanna River valley headward erosion (to create northeast-oriented Bald Eagle Creek and the northeast-oriented West Branch Susquehanna River segment) and third by North Branch Susquehanna River valley headward erosion. This interpretation explains most if not all of the previously poorly explained and unexplained topographic map evidence.展开更多
In recent years,the integrated development of the tea and tourism has become an important way to promote the rural revitalization of Tai'an tea-producing areas,but the state of industrial upgrading still needs to ...In recent years,the integrated development of the tea and tourism has become an important way to promote the rural revitalization of Tai'an tea-producing areas,but the state of industrial upgrading still needs to be improved.In order to better integrate tea and tourism in Tea Valley,this paper uses questionnaire and SWOT analysis to study.It found the following problems:(i)45.7%of tourists were interested in tea culture,but they know litle about it,and the integration of tea culture and tea tourism products is low.(i)50.54%of the tourists were interested in the tea picking experience project and wanted to add the tea food experience item.(ii)The acceptance of 45.7%of tourists to scenic spots was 1-2 h,which shows that the quality of transportation service facilities and personnel needs to be improved.Combined with the SWOT analysis,it is found that the scenic spot is rich in resources,convenient transportation,profound cultural heritage,and good govern-ment policy support conditions,which is suitable for the SO strategy(growth development strategy),so the scenic spot relies on internal ad-vantages and seizes external opportunities to develop the integration of tea and tourism.Based on the analysis results,it came up with the perti-nent recommendations for the key problems:(i)The infrastructure service is not well established.It is suggested that scenic spots should in-crease investment,regularly train service personnel to improve their quality,and improve transportation services,accommodation,catering and public service hardware facilities.(i)Tea tourism products are insufficient.It is suggested that tea tourism products should be innovatively designed and tea tourism experiential products and tourism commodities should be planned.(i)Tea culture and tourism lack organic combi-nation.It is recommended to deeply excavate tea culture,and take consideration of both spiritual and material aspects.The specific methods include building teahouses,Taishan Mountain(Mount Tai)tea culture throughout the whole process of tea production,development and pro-cessing,and AR tea culture experience hall can be built to make tourists feel tea culture from dfferent perspectives.(iv)The publicity is in-sufficient.Strategies should be made in three aspects:improving the Internet media,taking into account the traditional media,and expanding the market based on the surrounding areas.(v)The tea industry chain is short.It is recommended to add four new industrial chain designs of"tea+accommodation,tea+catering,tea+Intemet,tea+training",hoping to bring some inspiration and ideas to the managers of scenic spots.展开更多
基金Exploration Corporation of the Three Gorges Project The"985 project"construction project of physical geography for Nanjing University
文摘This paper describes valley bottom troughs of the Changjiang River and infers the geomorphologic development of troughs. Based on the morphology of the troughs, the following conclusions are drawn. (1) The deep troughs on the Three Gorges valley bottom are formed by river downcutting along the structural zones on the background of regional tectonic uplift at about 40-30 ka BP. (2) When river downcutting occurred in the river bed of Changjiang, the jets current (particularly eddy current) with a large number of pebbles ground and eroded the valley bottom, resulting in trough formation and deepening. Meanwhile, water currents with gravels and pebbles eroded the bank and the left wall of No.76 trough as well as the right wall of No.77 trough by striking, scouring, horizontal and vertical grinding. (3) The depth of the trough is mainly determined by the intensity of the water current and the consistency of bedrock against erosion, and is not controlled by the altitude of the sea level as the base level of erosion.
文摘With the aim of finding the geochemical differences and helping to build alleviating strategies against iron toxicity, two hematite dominant valley bottoms irrigating rice soils were investigated in the Tropical Savannah region of Burkina Faso. The first site was Tiefora, a 15-ha modern double-season irrigated rice system and moderately affected by iron toxicity (10% of the area with a toxicity score of 4). The second site was Moussodougou, a 35-ha traditional singleseason irrigated rice valley-bottom, with 50% facing more severe iron toxicity (score 7). Nine soil extracts were taken from three depths—30, 50 and 100 cm—i.e. 27 at Tiefora and 27 at Moussodogou. Five techniques were used to measure the data: 1) the ferrous iron concentration was determined using a reflectometer, 2) a pH-meter yielded the pH, 3) clay-proportions were obtained by United States Department of Agriculture (USDA) grain size analysis and densitometry, 4) the organic matter was determined by oven drying (900℃) and v) the dry bulk density was determined by using undisturbed soil samples. Statistical hypothesis testing of One-way ANOVA and Welch t-test was applied to the data to isolate the similarities and the differences between the two sites. A geochemical analysis followed to find the causes of these differences. The results showed that while oxidation of pyrite leads to a simultaneous increase in Fe2+ concentrations and acidity in the soils of coastal floodplains and mangroves, the oxidation of hematite in Tropical savannah valley bottoms decreases Fe2+ but also increases acidity during the dry season. As a consequence, it was found that the single-season irrigation scheme Moussodougou is significantly (p-value 0.4%) more acidic (pH 5.7) than the double-season system of Tiefora (6.4) with also 750 - 1800 mg/l higher ferrous Fe2+. The ferrous iron reached 3000 mg/l in some layers in Moussodougou. This result is a justification to modernize a traditional single-season spate irrigation schemes into a double-season irrigated rice scheme.
基金CSIR for providing financial assistance(09/0420(11800)/2021EMR-I)。
文摘The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide distribution and the lithotectonic regime of Darma Valley,Kumaun Himalaya.A landslide inventory comprising 295 landslides in the area has been prepared and several morphotectonic proxies such as valley floor width to height ratio(Vf),stream length gradient index(SL),and hypsometric integral(HI)have been used to infer tectonic regime.Morphometric analysis,including basic,linear,aerial,and relief aspects,of 59 fourth-order sub-basins,has been carried out to estimate erosion potential in the study area.The result demonstrates that 46.77%of the landslides lie in very high,20.32%in high,21.29%in medium,and 11.61%in low erosion potential zones respectively.In order to determine the key parameters controlling erosion potential,two multivariate statistical methods namely Principal Component Analysis(PCA)and Agglomerative Hierarchical Clustering(AHC)were utilized.PCA reveals that the Higher Himalayan Zone(HHZ)has the highest erosion potential due to the presence of elongated sub-basins characterized by steep slopes and high relief.The clusters created through AHC exhibit positive PCA values,indicating a robust correlation between PCA and AHC.Furthermore,the landslide density map shows two major landslide hotspots.One of these hotspots lies in the vicinity of highly active Munsiyari Thrust(MT),while the other is in the Pandukeshwar formation within the MT's hanging wall,characterized by a high exhumation rate.High SL and low Vf values along these hotspots further corroborate that the occurrence of landslides in the study area is influenced by tectonic activity.This study,by identifying erosionprone areas and elucidating the implications of tectonic activity on landslide distribution,empowers policymakers and government agencies to develop strategies for hazard assessment and effective landslide risk mitigation,consequently safeguarding lives and communities.
基金funded by China National Offshore Oil Corporation (CNOOC)sponsored by the National Natural Science Foundation of China (Nos.41406031 and 41376038)NSFC-Shandong Joint Fund for Marine Science Research Centers (No.U1406404)
文摘Bottom currents at about 1000m depth in and around a submarine valley on the continental slope of the northern South China Sea were studied by a 14-month long experiment from July 2013 to September 2014. The observations reveal that bottom currents are strongly influenced by the topography, being along valley axis or isobaths. Power density spectrum analysis shows that all the currents have significant peaks at diurnal and semi-diurnal frequencies. Diurnal energy is dominant at the open slope site, which is consistent with many previous studies. However, at the site inside the valley the semi-diurnal energy dominates, although the distance between the two sites of observation is quite small (11 kin) compared to a typical horizontal first-mode internal tide wavelength (200 km). We found this phenomenon is caused by the focusing of internal waves of certain frequencies in the valley. The inertial peak is found only at the open slope site in the first deployment but missing at the inside valley site and the rest of the de- ployments. Monthly averaged residual currents reveal that the near-bottom currents on the slope flow southwestward throughout the year except in August and September, 2013, from which we speculate that this is a result of the interaction between a mesoscale eddy and the canyon/sag topography. Currents inside the valley within about 10mab basically flow along slope and in the layers above the 10mab the currents are northwestward, that is, from the deep ocean to the shelf. The monthly mean current vectors manifest an Ek- man layer-like vertical structure at both sites, which rotate counter-clockwise looking from above.
基金This research was supported by the National Natural Science Foundation of China under Grant Nos.40105003 and 4001161948partly supported by the Chinese Academny of Sciences Projct KZCX-201.
文摘Water tank experiments were carried out to investigate the thermal convection due to the bottom heating in an asymmetrical valley under neutral and stably stratified approach flows with the Particle Image Velometry (PIV) visualization technique. In the neutral stratification approach flow, the ascending draft induced by bottom heating is mainly located in the center of the valley in calm ambient wind. However, with ambient wind flow, the thermal convection is shifted leeward, and the descending draft is located on the leeward side of the valley, while the ascending draft is located on the windward side. The descending draft is minorly turbulent and organized, while the ascending draft is highly turbulent. With the increase of the towing speed, the descending and ascending drafts induced by the mechanical elevation begin to play a more dominant role in the valley flow, while the role of the thermal convection in the valley airflow becomes limited. In the stable stratification approach flow, the thermal convection is limited by the stable stratification and no distinct circulation is formed in calm ambient wind. With ambient wind, agravity wave appears in the upper layer in the valley. With the increase of the ambient wind speed, a gravity wave plays an important role in the valley flow, and the location and intensity of the thermal convection are also modulated by the gravity internal waves. The thermal convection has difficulty penetrating the upper stable layer. Its exchange is limited between the air in the upper layer and that in the lower layer in the valley, and it is adverse to the diffusion of pollutants in the valley.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274264 and 11674197)the Natural Science Foundation of Shandong Province of China (Grant Nos.ZR2022MA039 and ZR2021MA105)the Qing-Chuang Science and Technology Plan of Shandong Province of China (Grant No.2019KJJ014)。
文摘The anomalous valley Hall effect(AVHE)can be used to explore and utilize valley degrees of freedom in materials,which has potential applications in fields such as information storage,quantum computing and optoelectronics.AVHE exists in two-dimensional(2D)materials possessing valley polarization(VP),and such 2D materials usually belong to the hexagonal honeycomb lattice.Therefore,it is necessary to achieve valleytronic materials with VP that are more readily to be synthesized and applicated experimentally.In this topical review,we introduce recent developments on realizing VP as well as AVHE through different methods,i.e.,doping transition metal atoms,building ferrovalley heterostructures and searching for ferrovalley materials.Moreover,2D ferrovalley systems under external modulation are also discussed.2D valleytronic materials with AVHE demonstrate excellent performance and potential applications,which offer the possibility of realizing novel low-energy-consuming devices,facilitating further development of device technology,realizing miniaturization and enhancing functionality of them.
基金supported by the National Natural Science Foundation of China (Grant Nos.12204073 and 12147102)the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No.KJQN202303105)+1 种基金the Specific Research Project of Guangxi for Research Bases and Talents (Grant No.2022AC21077)the Foundation of Guangxi University of Science and Technology (Grant No.21Z52)。
文摘Inner edge state with spin and valley degrees of freedom is a promising candidate for designing a dissipationless device due to the topological protection. The central challenge for the application of the inner edge state is to generate and modulate the polarized currents. In this work, we discover a new mechanism to generate fully valley-and spin–valley-polarized current caused by the Bloch wavevector mismatch(BWM). Based on this mechanism, we design some serial-typed inner-edge filters. By using once of the BWM, the coincident states could be divided into transmitted and reflected modes, which can serve as a valley or spin–valley filter. In particular, while with twice of the BWM, the incident current is absolutely reflected to support an off state with a specified valley and spin, which is different from the gap effect.These findings give rise to a new platform for designing valleytronics and spin-valleytronics.
基金the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030004)the National Natural Science Foundation of China(Grant No.42175056)+3 种基金the Natural Science Foundation of Shanghai(Grant No.21ZR1457600)Review and Summary Project of China Meteorological Administration(Grant No.FPZJ2023-044)the China Meteorological Administration Innovation and Development Project(Grant No.CXFZ2022J009)the Key Innovation Team of Climate Prediction of the China Meteorological Administration(Grant No.CMA2023ZD03).
文摘In the summer of 2022,China(especially the Yangtze River Valley,YRV)suffered its strongest heatwave(HW)event since 1961.In this study,we examined the influences of multiscale variabilities on the 2022 extreme HW in the lower reaches of the YRV,focusing on the city of Shanghai.We found that about 1/3 of the 2022 HW days in Shanghai can be attributed to the long-term warming trend of global warming.During mid-summer of 2022,an enhanced western Pacific subtropical high(WPSH)and anomalous double blockings over the Ural Mountains and Sea of Okhotsk,respectively,were associated with the persistently anomalous high pressure over the YRV,leading to the extreme HW.The Pacific Decadal Oscillation played a major role in the anomalous blocking pattern associated with the HW at the decadal time scale.Also,the positive phase of the Atlantic Multidecadal Oscillation may have contributed to regulating the formation of the double-blocking pattern.Anomalous warming of both the warm pool of the western Pacific and tropical North Atlantic at the interannual time scale may also have favored the persistency of the double blocking and the anomalously strong WPSH.At the subseasonal time scale,the anomalously frequent phases 2-5 of the canonical northward propagating variability of boreal summer intraseasonal oscillation associated with the anomalous propagation of a weak Madden-Julian Oscillation suppressed the convection over the YRV and also contributed to the HW.Therefore,the 2022 extreme HW originated from multiscale forcing including both the climate warming trend and air-sea interaction at multiple time scales.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074301 and 12004295)China’s Postdoctoral Science Foundation funded project (Grant No.2022M722547)+1 种基金the Open Project of State Key Laboratory of Surface Physics (Grant No.KF2022 09)the Natural Science Foundation of Guizhou Provincial Education Department (Grant No.ZK[2021]034)。
文摘The electron's charge and spin degrees of freedom are at the core of modern electronic devices. With the in-depth investigation of two-dimensional materials, another degree of freedom, valley, has also attracted tremendous research interest. The intrinsic spontaneous valley polarization in two-dimensional magnetic systems, ferrovalley material, provides convenience for detecting and modulating the valley. In this review, we first introduce the development of valleytronics.Then, the valley polarization forms by the p-, d-, and f-orbit that are discussed. Following, we discuss the investigation progress of modulating the valley polarization of two-dimensional ferrovalley materials by multiple physical fields, such as electric, stacking mode, strain, and interface. Finally, we look forward to the future developments of valleytronics.
基金was performed within the framework of the State Assignment Projects No.0284–2021-0002.
文摘Comprehensive research has been implemented to raise the efficiency of the geochemical survey of stream sediments(SSs)that formed under the cryolithogenesis conditions.The authors analysed the composition,structure and specific features of the formation of exogenous anomalous geochemical fields(AGFs)identified through SSs of large river valleys of IV order.In our case,these were the valleys of Maly Ken,Ken and Tap Rivers.These rivers are located in the central and southern parts of the Balygychan-Sugoy trough enclosed in the Magadan region,North-East of Russia.The authors proposed a new technique to sample loose alluvium of SSs in the large river valleys along the profiles.The profiles were located across the valleys.The AGFs of Au,Ag,Pb,Zn,Sn,Bi,Mo and W were studied.Correlations between elements have been established.These elements are the main indicator elements of Au-Ag,Ag-Pb,Sn-Ag,Mo-W and Sn-W mineralization occurring on the sites under study.The results obtained were compared with the results of geochemical surveys of SSs.It is concluded that the AGFs recognized along the profiles reflect the composition and structure of eroded and drained ore zones,uncover completely and precisely the pattern of element distribution in loose sediments of large water flows.The alluvium fraction<0.25 mm seems to be most significant in a practical sense,as it concentrated numerous ore elements.Sampling of this fraction in the river valleys of IV order does not cause any difficulty,for this kind of material is plentiful.The developed technique of alluvium sampling within large river valleys is efficient in searching for diverse mineralization at all stages of prognostic prospecting.It is applicable for geochemical survey of SSs performed at different scales both in the North-East of Russia,as well as other regions with similar climatic conditions,where the SSs are formed under the cryolithogenesis conditions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12304058, 12204073, and 12147102)Guangxi Science and Technology Base and Talent Project (Grant No. 2022AC21077)+1 种基金Natural Science Foundation of Guangxi Province (Grant No. 2024GXNSFBA010229)Foundation of Guangxi University of Science and Technology (Grant No. 21Z52)。
文摘Topological zero-line modes(ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spinvalley transport, which support a platform for exploring quantum transport physics and potential applications in spintronic/valleytronic devices. In this work, we investigate the beam-splitting behaviors of the charge current due to the ZLMs in a three-terminal system. We show that with certain combinations of ZLMs, the incident charge current along the interface between different topological phases can be divided into different polarized currents with unit transmittance in two outgoing terminals. As a result, fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters are generated. The mechanism of these splitters is attributed to the cooperative effects of the distribution of the ZLMs and the intervalley and intravalley scatterings that are modulated by the wave-vector mismatch and group velocity mismatch. Interestingly, half-quantized transmittance of these scatterings is found in a fully spin-valley-polarized electron beam splitter.Furthermore, the results indicate that these splitters can be applicable to graphene, silicene, germanene and stanene due to their robustness against the spin–orbit coupling. Our findings offer a new way to understand the transport mechanism and investigate the promising applications of ZLMs.
基金support from the Funding for School-level Research Projects of Yancheng Institute of Technology(Grant Nos.xjr2020038,xjr2022039,and xjr2022040)。
文摘Owing to their charge-free property,magnons are highly promising for achieving dissipationless transport without Joule heating,and are thus potentially applicable to energy-efficient devices.Here,we investigate valley magnons and associated valley modulations in a kagome ferromagnetic lattice with staggered exchange interaction and Dzyaloshinskii-Moriya interaction.The staggered exchange interaction breaks the spatial inversion symmetry,leading to a valley magnon Hall effect.With nonzero Dzyaloshinskii-Moriya interaction in a staggered kagome lattice,the magnon Hall effect can be observed from only one valley.Moreover,reversing the Dzyaloshinskii-Moriya interaction(D→-D)and exchanging J_(1)and J_(2)(J_(1)■J_(2))can also regulate the position of the unequal valleys.With increasing Dzyaloshinskii-Moriya interaction,a series of topological phase transitions appear when two bands come to touch and split at the valleys.The valley Hall effect and topological phase transitions observed in kagome magnon lattices can be realized in thin films of insulating ferromagnets such as Lu_(2)V_(2)O_(7),and will extend the basis for magnonics applications in the future.
文摘Valleytronics, using valley degree of freedom to encode, process, and store information, may find practical applications in low-power-consumption devices. Recent theoretical and experimental studies have demonstrated that twodimensional(2D) honeycomb lattice systems with inversion symmetry breaking, such as transition-metal dichalcogenides(TMDs), are ideal candidates for realizing valley polarization. In addition to the optical field, lifting the valley degeneracy of TMDs by introducing magnetism is an efficient way to manipulate the valley degree of freedom. In this paper, we first review the recent progress on valley polarization in various TMD-based systems, including magnetically doped TMDs,intrinsic TMDs with both inversion and time-reversal symmetry broken, and magnetic TMD heterostructures. When topologically nontrivial bands are empowered into valley-polarized systems, valley-polarized topological states, namely valleypolarized quantum anomalous Hall effect can be realized. Therefore, we have also reviewed the theoretical proposals for realizing valley-polarized topological states in 2D honeycomb lattices. Our paper can help readers quickly grasp the latest research developments in this field.
基金supported by the National Natural Science Foundation of China(Grant No.12174051).
文摘Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T_(3) lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.
基金Project supported by the Suzhou Basic Research Project (Grant No.SJC2023003)Suzhou City University National Project Pre-research Project (Grant No.2023SGY014)。
文摘We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.
基金Project supported by the National Natural Science Foundation of China(Grant No.12374302)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX0872).
文摘Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12174051 and 12304069)。
文摘Valleytronics is an emergent discipline in condensed matter physics and offers a new way to encode and manipulate information based on the valley degree of freedom in materials. Among the various materials being studied, Kekulé distorted graphene has emerged as a promising material for valleytronics applications. Graphene can be artificially distorted to form the Kekulé structures rendering the valley-related interaction. In this work, we review the recent progress of research on Kekulé structures of graphene and focus on the modified electronic bands due to different Kekulé distortions as well as their effects on the transport properties of electrons. We systematically discuss how the valley-related interaction in the Kekulé structures was used to control and affect the valley transport including the valley generation, manipulation, and detection. This article summarizes the current challenges and prospects for further research on Kekulé distorted graphene and its potential applications in valleytronics.
文摘Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and lessen or stop the spread of zoonotic diseases to humans. Animal vaccines that are both safe and efficacious are vital to modern culture. The vaccine should induce a strong, protective and prolonged immune response against the antigenic factor. In order to achieve these goals, novel vaccination techniques and an efficient adjuvant are required to render the vaccine immunogenically protective and trigger a strong immune response. Aim: Our study aims to promote and enhance the immunogenicity against RVF virus disease through lyophilized inactivated RVF vaccine through induction of early cellular, high and prolonged humeral immunity in vaccinated animals using cabopol as stabilizer and Saponin or normal saline as a diluent at time of vaccination. Moreover, manufacturing of these vaccines is easy to be done. Results: The gained results revealed that RVF freeze-dried vaccine with Carbopol that reconstituted using Saponin elicited better immune response than that reconstituted using normal saline (NaCl). The cell mediated immune response as represented by lymphocyte blastogenesis and phagocytic activity were markedly increased with high levels when we used Saponin as a diluent than that in group vaccinated with vaccine diluted with NaCl, on the other side the humeral immune response in group vaccinated using the Saponin as diluent is more detected and stayed within the protective level till the end of 11<sup>th</sup> month post vaccination (1.5 TCID<sub>50</sub>) while the immune response induced after using normal saline as a diluent stayed within the protective level till the end of 10<sup>th</sup> month post vaccination (1.8 TCID<sub>50</sub>). Conclusion: The use of Saponin as a diluent for reconstitution of the freeze dried RVF vaccine is preferable than the use of normal saline enhancing both sheep cellular and humeral immune response.
文摘A new glacial history paradigm that describes huge and prolonged southwest-oriented meltwater floods flowing along the rising rim of a deep “hole” (which a large continental icesheet created and occupied) is used to explain previously unexplained or poorly explained central Pennsylvania Bald Eagle through valley region topographic map evidence. Pennsylvania’s Bald Eagle through valley as defined here extends in a northeast direction from near Altoona to near Williamsport along the Allegheny Front escarpment base and forms the boundary between the Appalachian Plateau to the northwest and the Ridge and Valley Province to the southeast. The Lycoming and Towanda Creek valleys follow a probable northeastern Bald Eagle through valley extension and a probable southern extension continues southward along the Allegheny Front base by crossing Juniata River tributary drainage basins to reach the Potomac River drainage basin. Landform features identified on topographic maps, which include through valleys (valleys crossing drainage divides), barbed tributaries, drainage route orientations, drainage route direction changes, water gaps, and gaps located along the Allegheny Front crest, are used to reconstruct how the Pennsylvania Susquehanna and Juniata River drainage systems developed. The resulting geomorphic history describes how massive southwest-oriented floods moving across what was probably a low relief and rising surface (now preserved if preserved at all by the region’s highest elevations) flowed to an actively eroding Potomac River drainage system before being captured and sometimes reversed first by Juniata River valley headward erosion, second by West Branch Susquehanna River valley headward erosion (to create northeast-oriented Bald Eagle Creek and the northeast-oriented West Branch Susquehanna River segment) and third by North Branch Susquehanna River valley headward erosion. This interpretation explains most if not all of the previously poorly explained and unexplained topographic map evidence.
文摘In recent years,the integrated development of the tea and tourism has become an important way to promote the rural revitalization of Tai'an tea-producing areas,but the state of industrial upgrading still needs to be improved.In order to better integrate tea and tourism in Tea Valley,this paper uses questionnaire and SWOT analysis to study.It found the following problems:(i)45.7%of tourists were interested in tea culture,but they know litle about it,and the integration of tea culture and tea tourism products is low.(i)50.54%of the tourists were interested in the tea picking experience project and wanted to add the tea food experience item.(ii)The acceptance of 45.7%of tourists to scenic spots was 1-2 h,which shows that the quality of transportation service facilities and personnel needs to be improved.Combined with the SWOT analysis,it is found that the scenic spot is rich in resources,convenient transportation,profound cultural heritage,and good govern-ment policy support conditions,which is suitable for the SO strategy(growth development strategy),so the scenic spot relies on internal ad-vantages and seizes external opportunities to develop the integration of tea and tourism.Based on the analysis results,it came up with the perti-nent recommendations for the key problems:(i)The infrastructure service is not well established.It is suggested that scenic spots should in-crease investment,regularly train service personnel to improve their quality,and improve transportation services,accommodation,catering and public service hardware facilities.(i)Tea tourism products are insufficient.It is suggested that tea tourism products should be innovatively designed and tea tourism experiential products and tourism commodities should be planned.(i)Tea culture and tourism lack organic combi-nation.It is recommended to deeply excavate tea culture,and take consideration of both spiritual and material aspects.The specific methods include building teahouses,Taishan Mountain(Mount Tai)tea culture throughout the whole process of tea production,development and pro-cessing,and AR tea culture experience hall can be built to make tourists feel tea culture from dfferent perspectives.(iv)The publicity is in-sufficient.Strategies should be made in three aspects:improving the Internet media,taking into account the traditional media,and expanding the market based on the surrounding areas.(v)The tea industry chain is short.It is recommended to add four new industrial chain designs of"tea+accommodation,tea+catering,tea+Intemet,tea+training",hoping to bring some inspiration and ideas to the managers of scenic spots.