期刊文献+
共找到2,308篇文章
< 1 2 116 >
每页显示 20 50 100
Parameters Sensitivity Characteristics of Highly Integrated Valve-Controlled Cylinder Force Control System 被引量:8
1
作者 Kai-Xian Ba Bin Yu +4 位作者 Xiang-Dong Kong Chun-He Li Qi-Xin Zhu Hua-Long Zhao Ling-Jian Kong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期159-175,共17页
Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system s... Nowadays, a highly integrated valve?controlled cylinder(HIVC) is applied to drive the joints of legged robots. Although the adoption of HIVC has resulted in high?performance robot control, the hydraulic force system still has problems, such as strong nonlinearity, and time?varying parameters. This makes HIVC force control very diffcult and complex. How to improve the control performance of the HIVC force control system and find the influence rule of the system parameters on the control performance is very significant. Firstly, the mathematical model of HIVC force control system is established. Then the mathematical expression for parameter sensitivity matrix is obtained by applying matrix sensitivity analysis(PSM). Then, aimed at the sinusoidal response under(three factors and three levels) working conditions, the simulation and the experiment are conducted. While the error between the simulation and experiment can’t be avoided. Therefore, combined with the range analysis, the error in the two performance indexes of sinusoidal response under the whole working condition is analyzed. Besides, the sensitivity variation pattern for each system parameter under the whole working condition is figured out. Then the two sensitivity indexes for the three system parameters, which are supply pressure, proportional gain and initial displacement of piston, are proved experimentally. The proposed method significantly reveals the sensitivity characteristics of HIVC force control system, which can make the contribution to improve the control performance. 展开更多
关键词 Highly integrated valve?controlled cylinder system Force control system Matrix sensitivity analysis Orthogonal test design Sensitivity index
下载PDF
ADAPTIVE CONTROLLER AND ITS APPLICATION IN FORCE SYSTEM OF ASYMMETRIC CYLINDER CONTROLLED BY SYMMETRIC VALVE 被引量:2
2
作者 WU Zhenshun ZHANG Lichun ZHAO Chunlei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第6期50-53,共4页
Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model referen... Partial pressure, system vibration and asymmetric system dynamic performance exit in asymmetric cylinder controller by symmetric valve hydraulic system. To solve this problem in the force control system, model reference adaptive controller is designed using equilibrium point stability theory and output error equation polynomial. The reference model is selected in such a way that it meets the system dynamic performance. Hardware configuration of asymmetric cylinder controlled by asymmetric valve hydraulic system is replaced by intelligent control algorithm, thus the cost is lowered and easy to application. Simulation results demonstrate that the proposed adaptive control sheme has good adaptive ability and well solves asymmetric dynamic performance problem. The designed adaptive controller is fairly robust to load disturbance and system parameter variation. 展开更多
关键词 Asymmetric cylinder controlled by symmetric servo valve Model reference Balance point Adaptive control
下载PDF
Research and Development of Electro‑hydraulic Control Valves Oriented to Industry 4.0:A Review 被引量:19
3
作者 Bing Xu Jun Shen +2 位作者 Shihao Liu Qi Su Junhui Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第2期5-24,共20页
Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace,which controls electro-hydraulic motion.With the development of automation,digital technology,and communication t... Electro-hydraulic control valves are key hydraulic components for industrial applications and aerospace,which controls electro-hydraulic motion.With the development of automation,digital technology,and communication technology,electro-hydraulic control valves are becoming more digital,integrated,and intelligent in order to meet the requirements of Industry 4.0.This paper reviews the state of the art development for electro-hydraulic control valves and their related technologies.This review paper considers three aspects of state acquisition through sensors or indirect acquisition technologies,control strategies along with digital controllers and novel valves,and online maintenance through data interaction and fault diagnosis.The main features and development trends of electro-hydraulic control valves oriented to Industry 4.0 are discussed. 展开更多
关键词 hydraulic valves Electro-hydraulic technology Sensor control Digital hydraulic Fault diagnosis
下载PDF
High Speed On/Off Valve Control Hydraulic Propeller 被引量:12
4
作者 ZHU Kangwu GU Linyi +1 位作者 CHEN Yuanjie LI Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期463-473,共11页
The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the eff... The work-class remotely-operated-underwater-vehicles(ROVs) are mainly driven by hydraulic propulsion system,and the effeciency of hydraulic propulsion system is an important performance index of ROVs.However,the efficiency of traditional hydraulic propulsion system controlled by throttle valves is too low.Therefore,in this paper,for small and medium ROVs,a novel propulsion system with higher efficiency based on high speed on/off valve control hydraulic propeller is proposed.To solve the conflict between large flow rate and high frequency response performance,a two-stage high speed on/off valve-motor unit with large flow rate and high response speed simultaneously is developed.Through theoretical analysis,an effective fluctuation control method and a novel pulse-width-pulse-frequency-modulation(PWPFM) are introduced to solve the conflict among inherently fluctuation,valve dynamic performance and system efficiency.A simulation model is established to evaluate the system performance.To prove the advantage of system in energy saving,and test the dynamic control performance of high speed on/off valve control propeller,a test setup is developed and a series of comparative experiments is completed.The smimulation and experiment results show that the two-stage high speed on/off valve has an excellent dynamic response performance,and can be used to realize high accuracy speed control.The experiment results prove that the new propulsion system has much more advantages than the traditional throttle speed regulation system in energy saving.The lowest efficiency is more than 40%.The application results on a ROV indicate that the high speed on/off valve control propeller system has good dynamic and steady-state control performances.Its transient time is only about 1 s-1.5 s,and steady-state error is less than 5%.Meanwhile,the speed fluctuation is small,and the smooth propeller speed control effect is obtained.On the premise of good propeller speed control performance,the proposed high speed on/off valve control propeller can improve the effeciency of ROV propulsion system significantly,and provides another attractive ROV propulsion system choice for engineers. 展开更多
关键词 high speed on/off valve fluctuation control pulse-width-pulse-frequency-modulation(PWPFM) hydraulic propulsion system remotely-operated-underwater-vehicle(ROV) energy saving system
下载PDF
Application of Simple Adaptive Control to Water Hydraulic Servo Cylinder System 被引量:4
5
作者 ITO Kazuhisa YAMADA Tsuyoshi +1 位作者 IKEO Shigeru TAKAHASHI Koji 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期882-888,共7页
Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real... Although conventional model reference adaptive control (MRAC) achieves good tracking performance for cylinder control, the controller structure is much more complicated and has less robustness to disturbance in real applications. This paper discusses the use of simple adaptive control (SAC) for positioning a water hydraulic servo cylinder system. Compared with MRAC, SAC has a simpler and lower order structure, i.e., higher feasibility. The control performance of SAC is examined and evaluated on a water hydraulic servo cylinder system. With the recent increased concerns over global environmental problems, the water hydraulic technique using pure tap water as a pressure medium has become a new drive source comparable to electric, oil hydraulic, and pneumatic drive systems. This technique is also preferred because of its high power density, high safety against fire hazards in production plants, and easy availability. However, the main problems for precise control in a water hydraulic system are steady state errors and overshoot due to its large friction torque and considerable leakage flow. MRAC has been already applied to compensate for these effects, and better control performances have been obtained. However, there have been no reports on the application of SAC for water hydraulics. To make clear the merits of SAC, the tracking control performance and robustness are discussed based on experimental results. SAC is confirmed to give better tracking performance compared with PI control, and a control precision comparable to MRAC (within 10 μm of the reference position) and higher robustness to parameter change, despite the simple controller. The research results ensure a wider application of simple adaptive control in real mechanical systems. 展开更多
关键词 water hydraulics servo cylinder system positioning control simple adaptive control
下载PDF
Flow Control for a Two-Stage Proportional Valve with Hydraulic Position Feedback 被引量:7
6
作者 He Wang Xiaohu Wang +1 位作者 Jiahai Huang Long Quan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第6期64-76,共13页
The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttl... The current research mainly focuses on the flow control for the two-stage proportional valve with hydraulic position feedback which is named as Valvistor valve.Essentially,the Valvistor valve is a proportional throttle valve and the flow fluctuates with the change of load pressure.The flow fluctuation severely restricts the application of the Valvistor valve.In this paper,a novel flow control method the Valvistor valve is provided to suppress the flow fluctuation and develop a high performance proportional flow valve.The mathematical model of this valve is established and linearized.Fuzzy proportional-integral-derivative(PID)controller is adopted in the closed-loop flow control system.The feedback is obtained by the flow inference with back-propagation neural network(BPNN)based on the spool displacement in the pilot stage and the pressure differential across the main orifice.The results show that inference with BPNN can obtain the flow data fast and accurately.With the flow control method,the flow can keep at the set point when the pressure differential across the main orifice changes.The flow control method is effective and the Valvistor valve changes from proportional throttle valve to proportional flow valve.For the developed proportional flow valve,the settling time of the flow is very short when the load pressure changes abruptly.The performances of hysteresis,linearity and bandwidth are in a high range.The linear mathematical model can be verified and the assumptions in the system modeling is reasonable. 展开更多
关键词 Flow control Proportional valve hydraulic position feedback Back-propagation neural network
下载PDF
Dynamic Simulation and Valve Structure Optimization of an Electro-Hydraulic Clutch Shift Control System in an Automatic Transmission 被引量:1
7
作者 韩笑 刘艳芳 +1 位作者 徐向阳 唐树晗 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期842-850,共9页
The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is... The electro-hydraulic clutch control system controls the transferred torque of gear-shifting clutches in clutch-to-clutch transmissions. A nonlinear dynamic model of an electro-hydraulic clutch shift control system is presented. The mechanical and fluid subsystems of all valves are investigated, including their interactions. Model validation of the electro-hydraulic valve system is performed by comparing the simulated and measured pressure curves. The dynamic characteristics of the electro-hydraulic clutch shift control system with different supply pressures and different fluid temperatures are simulated and evaluated. It is found that pipes which are often ignored between the electro-hydraulic valve system and the clutch piston,have strong influence on clutch piston chamber pressures. In order to satisfy the required time and reduce the fluctuation of the clutch piston chamber pressures,the orifices' diameters and valve structure are optimized. 展开更多
关键词 clutch shift control system hydraulic valve dynamic characteristic simulation study
下载PDF
Dynamic Modelling and Design of a Servomechanism for Hydraulic Directional-Control Valves 被引量:1
8
作者 Tan Runbua and A. J. Reynolds 《河北工业大学学报》 CAS 1997年第A01期58-75,共18页
This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control va... This paper analyses a control strategy applicable in heaVy-duty hydraulic Systems,namely, the introduction of a servovalve to achieve smoother operation of direCtional-control valves that serve also as flow-control valves over two fanges of operating conditions. A mathematical model of the dynamics of the System is etallished and design criteria are obtained from a linearised form of that model. The influence of variations in tile axial force on the spool of the main valve is investigated, and the use of the resultS in the design of systems of the proposed kind is discussed. 展开更多
关键词 hydraulic System DYNAMIC Performance Servomechnaism FLOW-control valve Directional-control valve.
下载PDF
Application of simple adaptive control to water hydraulic servo cylinder system
9
作者 Tsuyoshi YAMADA Kazuhisa ITO +1 位作者 Shigeru IKEO Masaharu NISHIMURA 《材料与冶金学报》 CAS 2010年第4期300-303,共4页
下载PDF
Investigation into the Independent Metering Control Performance of a Twin Spools Valve with Switching Technology-controlled Pilot Stage 被引量:6
10
作者 Qi Zhong Huiming Bao +3 位作者 Yanbiao Li Haocen Hong Bin Zhang Huayong Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第5期226-242,共17页
In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonabl... In hydraulic area,independent metering control(IMC)technology is an effective approach to improve system efficiency and control flexibility.In addition,digital hydraulic technology(DHT)has been verified as a reasonable method to optimize system dynamic performance.Integrating these two technologies into one component can combine their advantages together.However,few works focused on it.In this paper,a twin spools valve with switching technologycontrolled pilot stage(TSVSP)is presented,which applied DHT into its pilot stage while appending IMC into its main stage.Based on this prototype valve,a series of numerical and experiment analysis of its IMC performance with both simulated load and excavator boom cylinder are carried out.Results showed fast and robust performance of pressure and flow compound control with acceptable fluctuation phenomenon caused by switching technology.Rising time of flow response in excavator cylinder can be controlled within 200 ms,meanwhile,the recovery time of rod chamber pressure under suddenly changed condition is optimized within 250 ms.IMC system based on TSVSP can improve both dynamic performance and robust characteristics of the target actuator so it is practical in valve-cylinder system and can be applied in mobile machineries. 展开更多
关键词 High speed on/off valve(HSV) Digital hydraulic technology(DHT) Switching pilot control Twin spools valve Independent metering control(IMC)
下载PDF
Investigation of Semi-Active Hydro-Pneumatic Suspension for a Heavy Vehicle Based on Electro-Hydraulic Proportional Valve 被引量:2
11
作者 Wenchao Yue Shoucheng Li Xiaojun Zou 《World Journal of Engineering and Technology》 2017年第4期696-706,共11页
Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters accordin... Hydro-pneumatic suspension is widely used in heavy vehicles due to its nonlinear characteristics of stiffness and damping. However, the conventional passive hydro-pneumatic suspension can’t adjust parameters according to the complicated road environment of heavy vehicles to fulfill the requirements of the vehicle ride comfort. In this paper, a semi-active hydro-pneumatic suspension system based on the electro-hydraulic proportional valve control is proposed, and fuzzy control is used as the control strategy to adjust the?damping force of the semi-active hydro-pneumatic suspension. A 1/4?semi-active hydro-pneumatic suspension model is established, which is co-simulated with AMESim and MATLAB/Simulink. The co-simulation results show that the semi-active hydro-pneumatic suspension system can significantly reduce vibration of the vehicle body, and improve the suspension performance comparing with passive hydro-pneumatic suspension. 展开更多
关键词 Hydro-Pneumatic SUSPENSION SEMI-ACTIVE control CO-SIMULATION ELECTRO-hydraulic Proportional valve
下载PDF
Design of a 70 MPa Two-Way Proportional Cartridge Valve for Large-Size Hydraulic Forging Press
12
作者 Jing Yao Yuxin Yin +1 位作者 Zhaosheng Dong Yuantong He 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期260-272,共13页
For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydrauli... For an ultra-high-pressure hydraulic transmission system of a large-size hydraulic forging press(LHFP),a 70 MPa two-way proportional cartridge valve has been developed to improve the power weight ratio of the hydraulic forging press.In this study,a nominal diameter 25 mm(DN25)cartridge valve is taken as the research object.A longer concentric cylindrical annular gap is set to effectively prevent the ultra-high-pressure oil from flowing to the pilot stage and a seated valve structure is set to form the linear sealing zone in the closing state of the main valve port.Electric-displacement feedback is adopted to realize precise control of the main valve port flow and the features of this valve are investigated.In order to verify the strength and static and dynamic characteristics,the finite element model and a simulation model of the valve proposed above are built.There is a little deformation which does not affect the main valve spool movement,and the main valve port flow meets the design demands.Then,the prototype of DN2570 TPCV is manufactured and a ultra-high-pressure experimental platform is developed.The experimental results show that the DN2570 TPCV designed in this study has the advantage of fast response,high control precision,and low leakage,which can meet the requirements of LHFPs. 展开更多
关键词 ultra-high-pressure cartridge valve large-size hydraulic forging press(LHFP) proportional control MODELLING
下载PDF
Robust control of a hydraulically driven flexible arm 被引量:1
13
作者 GuangLI KhajepourAMIR 《控制理论与应用(英文版)》 EI 2004年第1期99-101,共3页
A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a contr... A new robust controller is proposed to regulate both flexural vibrations and rigid body motion of a hydraulically driven flexible arm. The controller combines backstepping control and sliding mode to arrive at a controller capable of dealing with a nonlinear system with uncertainties. The sliding mode technique is used to achieve an asymptotic joint angle and vibration regulation in the presence of payload uncertainty by providing a virtual torque input at the joint while the backstepping technique is used to regulate the spool position of a hydraulic valve to provide the required torque. It is shown that there is no chatter in the hydraulic valve, which results in smoother operation of the system. 展开更多
关键词 Sliding mode control Backstepping control hydraulic valve Flexible arm
下载PDF
RESEARCH ON THE PERFORMANCE OF NEW TYPE OF PROPORTIONAL PESSURE AND FLOW CONTROL VALVE 被引量:9
14
作者 Quan LongMa JianWang YongjinInstitute of Mechatronics,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期281-284,共4页
A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control... A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved. 展开更多
关键词 Electro-hydraulic proportional control Proportional flow valve Proportionalpressure valve Pressure and flow compound control
下载PDF
Separate Control of High Frequency Electro-hydraulic Vibration Exciter 被引量:7
15
作者 JIA Wen'ang RUAN Jian REN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期293-302,共10页
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca... The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset. 展开更多
关键词 control valves electro-hydraulic system vibration exciter dynamics characteristics
下载PDF
Simulation and experimental research of digital valve control servo system based on CMAC-PID control method 被引量:5
16
作者 赵劲松 Zhao Zining +2 位作者 Wang Zhipeng Zhang Chuanbi Yao Jing 《High Technology Letters》 EI CAS 2017年第3期306-314,共9页
Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound co... Digital valve control servo system is studied in this paper. In order to solve the system problems of poor control precision and slow response time,a CMAC-PID( cerebellar model articulation controller-PID) compound control method is proposed. This compound controller consists of two components: one is a traditional PID for the feedback control to guarantee stability of the system; the other is the CMAC control algorithm to form a feed-forward control for achieving high control precision and short response time of the controlled plant. Then the CMAC-PID compound control method is used in the digital valve control servo system to improve its control performance. Through simulation and experiment,the proposed CMAC-PID compound control method is superior to the traditional PID control for enhancing stability and robustness,and thus this compound control can be used as a new control strategy for the digital valve control servo system. 展开更多
关键词 electro-servo system digital hydraulic digital valve CMAC-PID compound control rapid control prototyping technology
下载PDF
Present Status and Prospect of High-Frequency Electro-hydraulic Vibration Control Technology 被引量:7
17
作者 Yi Liu Tao Wang +1 位作者 Guofang Gong Rujun Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第6期1-16,共16页
Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large outpu... Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform. 展开更多
关键词 Electro-hydraulic vibration equipment HIGH-FREQUENCY Vibration control Vibration waveform Twin-valve
下载PDF
基于SimHydraulics的电液伺服系统实物仿真 被引量:19
18
作者 孟亚东 李长春 +1 位作者 刘晓东 张金英 《系统仿真学报》 CAS CSCD 北大核心 2009年第6期1596-1598,1601,共4页
针对一个采用阀控对称缸的电液伺服系统进行了SimHydraulics实物仿真,根据仿真结果辨识出系统的数学模型,通过与机理建模和Simulink模型仿真的结果相对比进行了验证。总结了综合应用SimHydraulics与Simulink的新仿真方法,该方法使得电... 针对一个采用阀控对称缸的电液伺服系统进行了SimHydraulics实物仿真,根据仿真结果辨识出系统的数学模型,通过与机理建模和Simulink模型仿真的结果相对比进行了验证。总结了综合应用SimHydraulics与Simulink的新仿真方法,该方法使得电液伺服系统的设计和控制方案的选择可以同步进行,提高了系统设计的效率和准确性。 展开更多
关键词 电液伺服系统 Simhydraulics仿真 SIMULINK仿真 阀控对称缸
下载PDF
Position Control for Asymmetrical Hydraulic Cylinder System Using a Single On/Off Valve 被引量:2
19
作者 雷军波 王宣银 +2 位作者 徐志鹏 罗语溪 皮阳军 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第6期651-656,共6页
A single on/off valve is used to carry out the position control of the asymmetrical hydraulic cylinder. The influence of the nominal flow rate on the positional accuracy of piston is investigated and the proximate for... A single on/off valve is used to carry out the position control of the asymmetrical hydraulic cylinder. The influence of the nominal flow rate on the positional accuracy of piston is investigated and the proximate formula for calculating the nominal flow rate of on/off valve is introduced. The system structure proposed in this paper could avoid cavitation and hyper pressure in two chambers to some extent. The simulation results indicated that the control method in this paper could satisfy the expected control requirements. 展开更多
关键词 on/off valves asvmmetrical hydraulic cvlinder position control
原文传递
基于Simulink/SimHydraulics的阀控二级液压缸系统的建模与仿真 被引量:7
20
作者 任建华 谢建 李良 《机床与液压》 北大核心 2012年第23期155-157,共3页
介绍SimHydraulics软件的特点和二级双作用液压缸的基本工作原理,利用Simulink/SimHydraulics软件,采用两个单级双作用液压缸级联的方式建立二级双作用液压缸的模型,对阀控二级液压缸位置控制系统进行仿真分析。仿真结果表明了模型的有... 介绍SimHydraulics软件的特点和二级双作用液压缸的基本工作原理,利用Simulink/SimHydraulics软件,采用两个单级双作用液压缸级联的方式建立二级双作用液压缸的模型,对阀控二级液压缸位置控制系统进行仿真分析。仿真结果表明了模型的有效性,为多级液压缸的建模提供了方法。 展开更多
关键词 Simhydraulics软件 二级双作用液压缸 位置控制 仿真
下载PDF
上一页 1 2 116 下一页 到第
使用帮助 返回顶部