用于检测生产服务过程的传统控制图多数都假定过程的分布是已知的。这些控制困经常是在正态分布的假设下构建的,然而在服务质量实时监控中数据往往是非正态的。在这种情况下,基于正态分布假设的控制图的结果是不可靠的。为了解决这个问...用于检测生产服务过程的传统控制图多数都假定过程的分布是已知的。这些控制困经常是在正态分布的假设下构建的,然而在服务质量实时监控中数据往往是非正态的。在这种情况下,基于正态分布假设的控制图的结果是不可靠的。为了解决这个问题,通常考虑非参数方法,因为在过程分布未知情况下,非参数控制图比参数图更加稳健有效。本文提出一个新的基于Van der Waerden和Klotz检验的Lepage型非参数Shewhart控制图(称为LPN图)用于同时检测未知连续过程分布的位置参数和尺度参数。文中给出了LPN图在不同参数下的控制限。依据运行长度分布的均值,方差和分位数,分析了LPN图在过程受控和失控时的性能,并与其他一些现有的非参数控制图进行比较。基于蒙特卡洛的模拟结果表明,LPN图对非正态分布具有很好的稳健性,并且在不同的过程分布下对检测位置参数和尺度参数,尤其对检测尺度参数的漂移都具有很好的性能。最后通过监控出租车服务质量说明LPN图在实际中的应用。展开更多
文摘用于检测生产服务过程的传统控制图多数都假定过程的分布是已知的。这些控制困经常是在正态分布的假设下构建的,然而在服务质量实时监控中数据往往是非正态的。在这种情况下,基于正态分布假设的控制图的结果是不可靠的。为了解决这个问题,通常考虑非参数方法,因为在过程分布未知情况下,非参数控制图比参数图更加稳健有效。本文提出一个新的基于Van der Waerden和Klotz检验的Lepage型非参数Shewhart控制图(称为LPN图)用于同时检测未知连续过程分布的位置参数和尺度参数。文中给出了LPN图在不同参数下的控制限。依据运行长度分布的均值,方差和分位数,分析了LPN图在过程受控和失控时的性能,并与其他一些现有的非参数控制图进行比较。基于蒙特卡洛的模拟结果表明,LPN图对非正态分布具有很好的稳健性,并且在不同的过程分布下对检测位置参数和尺度参数,尤其对检测尺度参数的漂移都具有很好的性能。最后通过监控出租车服务质量说明LPN图在实际中的应用。