The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium spec...The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.展开更多
A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yiel...A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yields of the products, easy procedure and selective acetylation of alcohols and phenols in the presence of amines and thiols are the main advantages of this procedure.展开更多
基金financial support from the French National Research Agency(project ANR-17-CE05-0023)。
文摘The vanadium redox flow battery(VRFB)has been receiving great attention in recent years as one of the most viable energy storage technologies for large-scale applications.However,higher concentrations of vanadium species are required in the H_(2)O-H_(2)SO_(4) electrolyte in order to improve the VRFB energy density.This might lead to unwanted precipitation of vanadium compounds,whose nature has not been accurately characterized yet.For this purpose,this study reports the preparation ofⅤ^((Ⅱ)),ⅤV^((Ⅲ)),Ⅴ^((Ⅳ))andⅤ^((Ⅴ))supersaturated solutions in a 5 M H_(2)SO_(4)-H_(2)O electrolyte by an electrolytic method,from the only vanadium sulfate compound commercially available(VOSO_(4)).The precipitates obtained by ageing of the stirred solutions are representative of the solids that may form in a VRFB operated with such supersaturated solutions.The solid phases are identified using thermogravimetric analysis,X-ray diffraction and SEM.We report that dissolvedⅤ^((Ⅱ)),Ⅴ^((Ⅲ))andⅤ^((Ⅳ))species precipitate as crystals of VSO_(4),V_(2)(SO_(4))3 and VOSO_(4) hydrates and not in their anhydrous form;conversely V^((Ⅴ))precipitates as an amorphous V_(2) O_(5) oxide partially hydrated.The measured hydration degrees(respectively 1.5,9,3 and 0.26 mol of H_(2)O per mol of compound)might significantly affect the overall engineering of VRFB operating with high vanadium concentrations.
基金this work by the research affair,University of Guilan,Rasht,Iran,
文摘A variety of alcohols and phenols are efficiently acetylated with acetic anhydride in the presence of a catalytic amount of V(HSO4)3 in solution and under solvent free conditions. Mild reaction conditions, high yields of the products, easy procedure and selective acetylation of alcohols and phenols in the presence of amines and thiols are the main advantages of this procedure.