The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundan...The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundant production of maleic anhydride(MA).Vanadium phosphorous oxide(VPO)is the most effective catalyst for selective oxidation of n-butane to MA so far.Interestingly,the VPO complex exists in more or less fifteen different structures,each one having distinct phase composition and exclusive surface morphology and physiochemical properties such as valence state,lattice oxygen,acidity etc.,which relies on precursor preparation method and the activation conditions of catalysts.The catalytic performance of VPO catalyst is improved by adding different promoters or co-catalyst such as various metals dopants,or either introducing template or structural-directing agents.Meanwhile,new preparation strategies such as electrospinning,ball milling,hydrothermal,barothermal,ultrasound,microwave irradiation,calcination,sol-gel method and solvothermal synthesis are also employed for introducing improvement in catalytic performance.Research in above-mentioned different aspects will be ascribed in current review in addition to summarizing overall catalysis activity and final yield.To analyze the performance of the catalytic precursor,the reaction mechanism and reaction kinetics both are discussed in this review to help clarify the key issues such as strong exothermic reaction,phosphorus supplement,water supplement,deactivation,and air/n-butane pretreatment etc.related to the various industrial applications of VPO.展开更多
Vanadium phosphorus oxide (VPO) catalysts were synthesized by the dihydrate method which involved the two steps for the preparation of the dihydrate (VOPO4 2H2 O) and the precursor hemi-hydrate (VOHPO4 0.5H2 O). Bi an...Vanadium phosphorus oxide (VPO) catalysts were synthesized by the dihydrate method which involved the two steps for the preparation of the dihydrate (VOPO4 2H2 O) and the precursor hemi-hydrate (VOHPO4 0.5H2 O). Bi and Ni salt were added into the mixture of VOPO4 2H2 O and isobu-tanol, and the obtained precursors were calcined in a flow of a n-butane/air mixture to produce the promoted VPO catalysts. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorp-tion- desorption, inductively coupled plasma-atomic emission spectroscopy, scanning electron mi-croscopy (SEM), and H2 temperature-programmed reduction (H2 -TPR). Their catalytic properties were tested using a fixed-bed microreactor. All the catalysts gave main XRD peaks at 2θ = 22.9°, 28.5°, and 30.0°, attributing to the (020), (204), and (221) planes of the pyrophosphate phase (VO)2 P2 O7, respectively. The promoted catalysts have smaller crystallite size and higher specific surface areas. SEM micrographs revealed the formation of more prominent plate-like crystallites that were arranged as rosette clusters. H2 -TPR results showed that the promoted catalysts had lower reduction peak temperatures and possessed higher amounts of V5+-O2– and V4+-O– pairs, which gave higher selectivity and activity in the selective oxidation of n-butane to maleic anhydride.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0206803)the innovation Academy for Green Manufacture of Chinese Academy of Science(IAGM2020C17)+3 种基金the Key Programs of the Chinese Academy of Sciences(KFZD-SW-413)the National Nature Science Foundation of China(21808223)the Key Programs of Fujian Institute of Innovation,CAS(FJCXY18020203)Chinese Academy of Sciences,the One Hundred Talent Program of CAS。
文摘The utilization of lighter alkanes into useful chemical products is essential for modern chemistry and reducing the CO_(2)emission.Particularly,n-butane has gained special attention across the globe due to the abundant production of maleic anhydride(MA).Vanadium phosphorous oxide(VPO)is the most effective catalyst for selective oxidation of n-butane to MA so far.Interestingly,the VPO complex exists in more or less fifteen different structures,each one having distinct phase composition and exclusive surface morphology and physiochemical properties such as valence state,lattice oxygen,acidity etc.,which relies on precursor preparation method and the activation conditions of catalysts.The catalytic performance of VPO catalyst is improved by adding different promoters or co-catalyst such as various metals dopants,or either introducing template or structural-directing agents.Meanwhile,new preparation strategies such as electrospinning,ball milling,hydrothermal,barothermal,ultrasound,microwave irradiation,calcination,sol-gel method and solvothermal synthesis are also employed for introducing improvement in catalytic performance.Research in above-mentioned different aspects will be ascribed in current review in addition to summarizing overall catalysis activity and final yield.To analyze the performance of the catalytic precursor,the reaction mechanism and reaction kinetics both are discussed in this review to help clarify the key issues such as strong exothermic reaction,phosphorus supplement,water supplement,deactivation,and air/n-butane pretreatment etc.related to the various industrial applications of VPO.
基金supported by the Ministry of Science,Technology and Innovation of Malaysia
文摘Vanadium phosphorus oxide (VPO) catalysts were synthesized by the dihydrate method which involved the two steps for the preparation of the dihydrate (VOPO4 2H2 O) and the precursor hemi-hydrate (VOHPO4 0.5H2 O). Bi and Ni salt were added into the mixture of VOPO4 2H2 O and isobu-tanol, and the obtained precursors were calcined in a flow of a n-butane/air mixture to produce the promoted VPO catalysts. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorp-tion- desorption, inductively coupled plasma-atomic emission spectroscopy, scanning electron mi-croscopy (SEM), and H2 temperature-programmed reduction (H2 -TPR). Their catalytic properties were tested using a fixed-bed microreactor. All the catalysts gave main XRD peaks at 2θ = 22.9°, 28.5°, and 30.0°, attributing to the (020), (204), and (221) planes of the pyrophosphate phase (VO)2 P2 O7, respectively. The promoted catalysts have smaller crystallite size and higher specific surface areas. SEM micrographs revealed the formation of more prominent plate-like crystallites that were arranged as rosette clusters. H2 -TPR results showed that the promoted catalysts had lower reduction peak temperatures and possessed higher amounts of V5+-O2– and V4+-O– pairs, which gave higher selectivity and activity in the selective oxidation of n-butane to maleic anhydride.