期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Some Implications of the Gessel Identity
1
作者 Claire Levaillant 《Applied Mathematics》 2023年第9期545-579,共35页
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p... We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters. 展开更多
关键词 convolutions Involving Bernoulli Numbers Truncated convolutions Involving Bernoulli Numbers CONGRUENCEs Binomial and Multinomial convolutions of Divided Bernoulli Numbers Multiple Harmonic sums Generalized Harmonic Numbers Miki identity Gessel identity sums of Powers of Integers Weighted by Powers of the Fermat Quotients Generalization of Kummer’s Congruences Generalizations of Friedmann-Tamarkine Lehmer Ernvall-Metsänkyla’s Congruences p-Adic Numbers Weighted sums of Powers of Integers
下载PDF
关于Vandermonde恒等式衍变式的推导与应用
2
作者 杜瑞卿 王骁力 《南阳师范学院学报》 CAS 2013年第9期11-15,共5页
根据Vandermonde恒等式,提出了4个衍变式:①∑ki=0CinCk-in+k-1-i,②∑ki=1(-1)i-1CinCk-in+k-1-i,③∑ni=0Cia+iCn-ib+n-i,④∑ni=0(-1)iCia+iCn-ib+n-i,利用母函数法或行列式法进行了推导,得出了4个新的恒等式,并利用恒等式证明了杨... 根据Vandermonde恒等式,提出了4个衍变式:①∑ki=0CinCk-in+k-1-i,②∑ki=1(-1)i-1CinCk-in+k-1-i,③∑ni=0Cia+iCn-ib+n-i,④∑ni=0(-1)iCia+iCn-ib+n-i,利用母函数法或行列式法进行了推导,得出了4个新的恒等式,并利用恒等式证明了杨辉三角子行列式. 展开更多
关键词 vandermonde恒等式 衍变 母函数法 行列式法
下载PDF
Jensen’s和Graham’s等式的推广
3
作者 丁丹 杨继真 王晓娜 《洛阳师范学院学报》 2015年第5期15-17,共3页
本文对Jensen与、Graham等式进行了推广,并得到了恒等式:∑k≤mm+r()kxkym-k=∑k≤m-r()k(-x)k(x+y)m-k.
关键词 Jensen等式 Chu-vandermonde卷积公式 二项式系数 Graham等式
下载PDF
Operator Methods and SU(1,1) Symmetry in the Theory of Jacobi and of Ultraspherical Polynomials
4
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2017年第2期213-261,共49页
Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting proper... Starting from general Jacobi polynomials we derive for the Ul-traspherical polynomials as their special case a set of related polynomials which can be extended to an orthogonal set of functions with interesting properties. It leads to an alternative definition of the Ultraspherical polynomials by a fixed integral operator in application to powers of the variable u in an analogous way as it is possible for Hermite polynomials. From this follows a generating function which is apparently known only for the Legendre and Chebyshev polynomials as their special case. Furthermore, we show that the Ultraspherical polynomials form a realization of the SU(1,1) Lie algebra with lowering and raising operators which we explicitly determine. By reordering of multiplication and differentiation operators we derive new operator identities for the whole set of Jacobi polynomials which may be applied to arbitrary functions and provide then function identities. In this way we derive a new “convolution identity” for Jacobi polynomials and compare it with a known convolution identity of different structure for Gegenbauer polynomials. In short form we establish the connection of Jacobi polynomials and their related orthonormalized functions to the eigensolution of the Schr&ouml;dinger equation to P&ouml;schl-Teller potentials. 展开更多
关键词 Orthogonal Polynomials Lie Algebra sU(1 1) and Lie Group sU(1 1) Lowering and Raising Operators Jacobi Polynomials Ultraspherical Polynomials Gegenbauer Polynomials Chebyshev Polynomials Legendre Polynomials stirling Numbers Hypergeometric Function Operator identities vandermond’s convolution identity Poschl-Teller Potentials
下载PDF
Generalized Eulerian Numbers
5
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2018年第3期335-361,共27页
We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z... We generalize the Eulerian numbers ?to sets of numbers Eμ(k,l), (μ=0,1,2,···) where the Eulerian numbers appear as the special case μ=1. This can be used for the evaluation of generalizations Eμ(k,Z) of the Geometric series G0(k;Z)=G1(0;Z) by splitting an essential part (1-Z)-(μK+1) where the numbers Eμ(k,l) are then the coefficients of the remainder polynomial. This can be extended for non-integer parameter k to the approximative evaluation of generalized Geometric series. The recurrence relations and for the Generalized Eulerian numbers E1(k,l) are derived. The Eulerian numbers are related to the Stirling numbers of second kind S(k,l) and we give proofs for the explicit relations of Eulerian to Stirling numbers of second kind in both directions. We discuss some ordering relations for differentiation and multiplication operators which play a role in our derivations and collect this in Appendices. 展开更多
关键词 EULERIAN NUMBERs EULERIAN Polynomials sTIRLING NUMBERs PERMUTATIONs Binomials HYPERGEOMETRIC Functions Geometric series vandermonde’s convolution identity Recurrence Relations Operator ORDERINGs
下载PDF
拟卷积公式及其应用 被引量:2
6
作者 孙映成 《连云港职业技术学院学报》 2004年第3期49-51,共3页
利用Lagrange-B櫣rmann反演公式导出了对任意的形式幂级数都适用的拟卷积公式,并讨论它在组合分析中的一些应用。
关键词 Tagrange—Buermann反演 拟卷积公式 组合恒等式
下载PDF
类Vandermonde恒等式的新组合恒等式:第一部分 被引量:5
7
作者 GOULD Henry Wadsworth 《中国科学:数学》 CSCD 北大核心 2015年第9期1505-1512,共8页
Vandermonde卷积恒等式为n∑k=0(xk)(yn-k)=(x+yn),其中x和y为复数,n为非负整数.本文研究如下形式n∑k=0(x k)(y k)=(x+yn)+R(x,y,n)与其他相关扩充的关系.
关键词 组合恒等式 vandermonde卷积 代数恒等式
原文传递
组合数列求和
8
作者 伍启期 《佛山科学技术学院学报(社会科学版)》 1996年第4期11-17,共7页
用组合解释法、母函数法、求和算子和卷积法,研究了范特蒙恒等式,朱世杰恒等式和组合数乘积之和。
关键词 组合数列求和 组合解释法 母函数 求和算子 卷积 范特蒙恒等式 朱世杰恒等式
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部