CARBON fiber is an reinforcing fiber of high performance and plays an important role in the development of advanced composite materials. Vapor-grown carbon fiber (VGCF) has higher tensile strength, Young’s modulus an...CARBON fiber is an reinforcing fiber of high performance and plays an important role in the development of advanced composite materials. Vapor-grown carbon fiber (VGCF) has higher tensile strength, Young’s modulus and conductivity than the polyacrylonitrile (PAN)- and pitch-based carbon fibers, which have been prepared on an industrial scale. It has been reported that the reaction temperature of VGCF from methane on Fe catalysts is higher展开更多
Vapor-grown crystals intimately related to shock metamorphism of meteorites were found in the Yanzhuang (H6) chondrite which had been heavily impacted in the space. These crystals include: (i) subhedral low-Ca pyroxen...Vapor-grown crystals intimately related to shock metamorphism of meteorites were found in the Yanzhuang (H6) chondrite which had been heavily impacted in the space. These crystals include: (i) subhedral low-Ca pyroxene occurring on the wall of the pores within a silicate melt pocket that experienced a shock temperature higher than 1 500℃, (ii)Fe-Ni needle-whiskers (taenite) occurring in the cracks in the partially melted chondritic facies that experienced a shock temperature of 850-1 300℃ , (iii) troilite with abundant microholes occurring in the cracks in the brecciated facies and the lightly deformed chondritic facies that experienced a shock temperature lower than 850℃ . The occurrence and mineralogical features of vapor-grown crystals show that vaporization of minerals could be produced in heavily impacted meteorites and that a small amount of crystals could be deposited in situ from vapor plus-展开更多
One of the most important factors that limits the use of LiFePO 4 as cathode material for lithium ion batteries is its low electronic conductivity.In order to solve this problem,LiFePO 4 in situ vapor-grown carbon fib...One of the most important factors that limits the use of LiFePO 4 as cathode material for lithium ion batteries is its low electronic conductivity.In order to solve this problem,LiFePO 4 in situ vapor-grown carbon fiber (VGCF) composite cathode material has been prepared in a single step through microwave pyrolysis chemical vapor deposition.The phase,microstructure,and electrochemical performance of the composites were investigated.Compared with the cathodes without in situ VGCF,the initial discharge capacity of the composite electrode increases from 109 to 144 mA h g-1 at a 0.5-C rate,and the total electric resistance decreases from 538 to 66.The possible reasons for these effects are proposed.展开更多
文摘CARBON fiber is an reinforcing fiber of high performance and plays an important role in the development of advanced composite materials. Vapor-grown carbon fiber (VGCF) has higher tensile strength, Young’s modulus and conductivity than the polyacrylonitrile (PAN)- and pitch-based carbon fibers, which have been prepared on an industrial scale. It has been reported that the reaction temperature of VGCF from methane on Fe catalysts is higher
基金Project supported by the National Science Foundation of Guangdong Province
文摘Vapor-grown crystals intimately related to shock metamorphism of meteorites were found in the Yanzhuang (H6) chondrite which had been heavily impacted in the space. These crystals include: (i) subhedral low-Ca pyroxene occurring on the wall of the pores within a silicate melt pocket that experienced a shock temperature higher than 1 500℃, (ii)Fe-Ni needle-whiskers (taenite) occurring in the cracks in the partially melted chondritic facies that experienced a shock temperature of 850-1 300℃ , (iii) troilite with abundant microholes occurring in the cracks in the brecciated facies and the lightly deformed chondritic facies that experienced a shock temperature lower than 850℃ . The occurrence and mineralogical features of vapor-grown crystals show that vaporization of minerals could be produced in heavily impacted meteorites and that a small amount of crystals could be deposited in situ from vapor plus-
基金supported by the National Natural Science Foundation of China (50672059)
文摘One of the most important factors that limits the use of LiFePO 4 as cathode material for lithium ion batteries is its low electronic conductivity.In order to solve this problem,LiFePO 4 in situ vapor-grown carbon fiber (VGCF) composite cathode material has been prepared in a single step through microwave pyrolysis chemical vapor deposition.The phase,microstructure,and electrochemical performance of the composites were investigated.Compared with the cathodes without in situ VGCF,the initial discharge capacity of the composite electrode increases from 109 to 144 mA h g-1 at a 0.5-C rate,and the total electric resistance decreases from 538 to 66.The possible reasons for these effects are proposed.