期刊文献+
共找到753篇文章
< 1 2 38 >
每页显示 20 50 100
A Shared Natural Neighbors Based-Hierarchical Clustering Algorithm for Discovering Arbitrary-Shaped Clusters
1
作者 Zhongshang Chen Ji Feng +1 位作者 Fapeng Cai Degang Yang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2031-2048,共18页
In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared... In clustering algorithms,the selection of neighbors significantly affects the quality of the final clustering results.While various neighbor relationships exist,such as K-nearest neighbors,natural neighbors,and shared neighbors,most neighbor relationships can only handle single structural relationships,and the identification accuracy is low for datasets with multiple structures.In life,people’s first instinct for complex things is to divide them into multiple parts to complete.Partitioning the dataset into more sub-graphs is a good idea approach to identifying complex structures.Taking inspiration from this,we propose a novel neighbor method:Shared Natural Neighbors(SNaN).To demonstrate the superiority of this neighbor method,we propose a shared natural neighbors-based hierarchical clustering algorithm for discovering arbitrary-shaped clusters(HC-SNaN).Our algorithm excels in identifying both spherical clusters and manifold clusters.Tested on synthetic datasets and real-world datasets,HC-SNaN demonstrates significant advantages over existing clustering algorithms,particularly when dealing with datasets containing arbitrary shapes. 展开更多
关键词 cluster analysis shared natural neighbor hierarchical clustering
下载PDF
Density Clustering Algorithm Based on KD-Tree and Voting Rules
2
作者 Hui Du Zhiyuan Hu +1 位作者 Depeng Lu Jingrui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期3239-3259,共21页
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional... Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy. 展开更多
关键词 Density peaks clustering KD-TREE K-nearest neighbors voting rules
下载PDF
Efficient Parallel Processing of k-Nearest Neighbor Queries by Using a Centroid-based and Hierarchical Clustering Algorithm
3
作者 Elaheh Gavagsaz 《Artificial Intelligence Advances》 2022年第1期26-41,共16页
The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a cer... The k-Nearest Neighbor method is one of the most popular techniques for both classification and regression purposes.Because of its operation,the application of this classification may be limited to problems with a certain number of instances,particularly,when run time is a consideration.However,the classification of large amounts of data has become a fundamental task in many real-world applications.It is logical to scale the k-Nearest Neighbor method to large scale datasets.This paper proposes a new k-Nearest Neighbor classification method(KNN-CCL)which uses a parallel centroid-based and hierarchical clustering algorithm to separate the sample of training dataset into multiple parts.The introduced clustering algorithm uses four stages of successive refinements and generates high quality clusters.The k-Nearest Neighbor approach subsequently makes use of them to predict the test datasets.Finally,sets of experiments are conducted on the UCI datasets.The experimental results confirm that the proposed k-Nearest Neighbor classification method performs well with regard to classification accuracy and performance. 展开更多
关键词 CLASSIFICATION k-Nearest neighbor Big data clustering Parallel processing
下载PDF
Intrusion Detection Algorithm Based on Density,Cluster Centers,and Nearest Neighbors 被引量:6
4
作者 Xiujuan Wang Chenxi Zhang Kangfeng Zheng 《China Communications》 SCIE CSCD 2016年第7期24-31,共8页
Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic fire... Intrusion detection aims to detect intrusion behavior and serves as a complement to firewalls.It can detect attack types of malicious network communications and computer usage that cannot be detected by idiomatic firewalls.Many intrusion detection methods are processed through machine learning.Previous literature has shown that the performance of an intrusion detection method based on hybrid learning or integration approach is superior to that of single learning technology.However,almost no studies focus on how additional representative and concise features can be extracted to process effective intrusion detection among massive and complicated data.In this paper,a new hybrid learning method is proposed on the basis of features such as density,cluster centers,and nearest neighbors(DCNN).In this algorithm,data is represented by the local density of each sample point and the sum of distances from each sample point to cluster centers and to its nearest neighbor.k-NN classifier is adopted to classify the new feature vectors.Our experiment shows that DCNN,which combines K-means,clustering-based density,and k-NN classifier,is effective in intrusion detection. 展开更多
关键词 intrusion detection DCNN density cluster center nearest neighbor
下载PDF
A KNN-based two-step fuzzy clustering weighted algorithm for WLAN indoor positioning 被引量:3
5
作者 Xu Yubin Sun Yongliang Ma Lin 《High Technology Letters》 EI CAS 2011年第3期223-229,共7页
Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to i... Although k-nearest neighbors (KNN) is a popular fingerprint match algorithm for its simplicity and accuracy, because it is sensitive to the circumstances, a fuzzy c-means (FCM) clustering algorithm is applied to improve it. Thus, a KNN-based two-step FCM weighted (KTFW) algorithm for indoor positioning in wireless local area networks (WLAN) is presented in this paper. In KTFW algorithm, k reference points (RPs) chosen by KNN are clustered through FCM based on received signal strength (RSS) and location coordinates. The right clusters are chosen according to rules, so three sets of RPs are formed including the set of k RPs chosen by KNN and are given different weights. RPs supposed to have better contribution to positioning accuracy are given larger weights to improve the positioning accuracy. Simulation results indicate that KTFW generally outperforms KNN and its complexity is greatly reduced through providing initial clustering centers for FCM. 展开更多
关键词 wireless local area networks (WLAN) indoor positioning k-nearest neighbors (KNN) fuzzy c-means (FCM) clustering center
下载PDF
DATA PREPROCESSING AND RE KERNEL CLUSTERING FOR LETTER
6
作者 Zhu Changming Gao Daqi 《Journal of Electronics(China)》 2014年第6期552-564,共13页
Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing ... Many classifiers and methods are proposed to deal with letter recognition problem. Among them, clustering is a widely used method. But only one time for clustering is not adequately. Here, we adopt data preprocessing and a re kernel clustering method to tackle the letter recognition problem. In order to validate effectiveness and efficiency of proposed method, we introduce re kernel clustering into Kernel Nearest Neighbor classification(KNN), Radial Basis Function Neural Network(RBFNN), and Support Vector Machine(SVM). Furthermore, we compare the difference between re kernel clustering and one time kernel clustering which is denoted as kernel clustering for short. Experimental results validate that re kernel clustering forms fewer and more feasible kernels and attain higher classification accuracy. 展开更多
关键词 Data preprocessing Kernel clustering Kernel Nearest neighbor(KNN) Re kernel clustering
下载PDF
Contrastive Clustering for Unsupervised Recognition of Interference Signals
7
作者 Xiangwei Chen Zhijin Zhao +3 位作者 Xueyi Ye Shilian Zheng Caiyi Lou Xiaoniu Yang 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1385-1400,共16页
Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emer... Interference signals recognition plays an important role in anti-jamming communication.With the development of deep learning,many supervised interference signals recognition algorithms based on deep learning have emerged recently and show better performance than traditional recognition algorithms.However,there is no unsupervised interference signals recognition algorithm at present.In this paper,an unsupervised interference signals recognition method called double phases and double dimensions contrastive clustering(DDCC)is proposed.Specifically,in the first phase,four data augmentation strategies for interference signals are used in data-augmentation-based(DA-based)contrastive learning.In the second phase,the original dataset’s k-nearest neighbor set(KNNset)is designed in double dimensions contrastive learning.In addition,a dynamic entropy parameter strategy is proposed.The simulation experiments of 9 types of interference signals show that random cropping is the best one of the four data augmentation strategies;the feature dimensional contrastive learning in the second phase can improve the clustering purity;the dynamic entropy parameter strategy can improve the stability of DDCC effectively.The unsupervised interference signals recognition results of DDCC and five other deep clustering algorithms show that the clustering performance of DDCC is superior to other algorithms.In particular,the clustering purity of our method is above 92%,SCAN’s is 81%,and the other three methods’are below 71%when jammingnoise-ratio(JNR)is−5 dB.In addition,our method is close to the supervised learning algorithm. 展开更多
关键词 Interference signals recognition unsupervised clustering contrastive learning deep learning k-nearest neighbor
下载PDF
Comparison of Supervised Clustering Methods for the Analysis of DNA Microarray Expression Data
8
作者 XIAO Jing WANG Xue-feng +1 位作者 YANG Ze-feng XU Chen-wu 《Agricultural Sciences in China》 CAS CSCD 2008年第2期129-139,共11页
Several typical supervised clustering methods such as Gaussian mixture model-based supervised clustering (GMM), k- nearest-neighbor (KNN), binary support vector machines (SVMs) and multiclass support vector mach... Several typical supervised clustering methods such as Gaussian mixture model-based supervised clustering (GMM), k- nearest-neighbor (KNN), binary support vector machines (SVMs) and multiclass support vector machines (MC-SVMs) were employed to classify the computer simulation data and two real microarray expression datasets. False positive, false negative, true positive, true negative, clustering accuracy and Matthews' correlation coefficient (MCC) were compared among these methods. The results are as follows: (1) In classifying thousands of gene expression data, the performances of two GMM methods have the maximal clustering accuracy and the least overall FP+FN error numbers on the basis of the assumption that the whole set of microarray data are a finite mixture of multivariate Gaussian distributions. Furthermore, when the number of training sample is very small, the clustering accuracy of GMM-Ⅱ method has superiority over GMM- Ⅰ method. (2) In general, the superior classification performance of the MC-SVMs are more robust and more practical, which are less sensitive to the curse of dimensionality, and not only next to GMM method in clustering accuracy to thousands of gene expression data, but also more robust to a small number of high-dimensional gene expression samples than other techniques. (3) Of the MC-SVMs, OVO and DAGSVM perform better on the large sample sizes, whereas five MC-SVMs methods have very similar performance on moderate sample sizes. In other cases, OVR, WW and CS yield better results when sample sizes are small. So, it is recommended that at least two candidate methods, choosing on the basis of the real data features and experimental conditions, should be performed and compared to obtain better clustering result. 展开更多
关键词 MICROARRAY supervised clustering k-nearest-neighbor (KNN) support vector machines (SVMs)
下载PDF
基于k-center聚类和最近邻中心的公平数据汇总
9
作者 何艳 黄巧玲 郑伯川 《西华师范大学学报(自然科学版)》 2025年第1期95-103,共9页
公平数据汇总是指从每种数据类别中选择有代表性的子集,且满足公平性要求。在大数据时代,每种类别的数据都是海量的,因此公平数据汇总研究具有非常重要的现实意义。为了使公平数据汇总的数据点更具有代表性,提出了基于k-center聚类和最... 公平数据汇总是指从每种数据类别中选择有代表性的子集,且满足公平性要求。在大数据时代,每种类别的数据都是海量的,因此公平数据汇总研究具有非常重要的现实意义。为了使公平数据汇总的数据点更具有代表性,提出了基于k-center聚类和最近邻中心的公平数据汇总算法。算法主要包括2个基本步骤:(1)通过k-center聚类,将k个簇中心作为当前汇总结果;(2)选择满足公平约束的原簇中心的最近邻点作为新簇中心。由于更新簇中心时选择的是原簇中心的最近邻点,因此相对随机选择的数据点,最近邻点更具有代表性,是除原始簇中心外的次优代表点。同时,寻找最近邻点作为新的簇中心能最大限度减少公平代价。在2个模拟数据集和6个UCI真实数据集上的对比实验结果表明,所提出的算法在近似因子和公平代价方面都优于对比算法,说明所提出的算法获得的数据汇总更具有代表性。 展开更多
关键词 最近邻点 k-center聚类 数据汇总 公平约束
下载PDF
一种改进的ZigBee网络Cluster-Tree路由算法 被引量:15
10
作者 李刚 陈俊杰 葛文涛 《测控技术》 CSCD 北大核心 2009年第9期52-55,共4页
针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法... 针对ZigBee网络Cluster-Tree算法只按父子关系选择路由可能会带来额外路由开销的问题,提出一种改进的Cluster-Tree路由算法。首先介绍ZigBee网络的地址分配机制,分析Cluster-Tree路由算法,并在此基础上引入邻居表提出改进算法。该算法的基本思想:如果选择邻居节点的路由开销与原算法相比更小,则会选择邻居节点作为下一跳。仿真结果表明,该算法可以减少约30%的路由开销。 展开更多
关键词 ZIGBEE网络 cluster—Tree算法 邻居表 路由开销
下载PDF
基于反向最近邻的密度估计聚类算法
11
作者 许梅梅 侯新民 《计算机工程与应用》 北大核心 2025年第1期165-173,共9页
基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类... 基于相互最近邻的密度峰聚类算法(DenMune)通过相互最近邻计算数据点的局部密度,是一种有效的聚类手段。但该算法存在构建聚类骨架不合理的问题,在分配弱点时采用硬投票策略,易产生错误。因此提出一种新的基于反向最近邻的密度估计聚类算法(RNN-DEC)。该算法引入反向最近邻来计算数据点的局部密度,将数据点分成强点、弱点和噪声点。使用强点构建聚类算法的骨架,通过软投票的方式将弱点分配到与其相似度最高的簇中去。提出了一种基于反向最近邻的簇融合算法,将相似度高的子簇融合,得到最终的聚类结果。实验结果表明,在一些合成数据集和UCI真实数据集上,相比较于其他经典算法,该算法具有更好的聚类效果。 展开更多
关键词 反向最近邻 局部密度 密度聚类算法 子簇融合
下载PDF
ZigBee中改进的Cluster-Tree路由算法 被引量:10
12
作者 谢川 《计算机工程》 CAS CSCD 北大核心 2011年第7期115-117,共3页
针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法... 针对ZigBee网络的Cluster-Tree算法对簇首能量要求高、选择的路由非最佳路由等问题,结合节点能量分析和节点邻居表,提出一种改进的簇首生成方法,利用AODVjr算法为节点选择最佳路由。仿真结果证明,与原Cluster-Tree算法相比,改进的算法能有效提高数据发送成功率,减少源节点与目标节点间的跳数,降低端到端的报文传输时延,提高网络的使用价值。 展开更多
关键词 ZIGBEE网络 路由算法 cluster-Tree算法 AODVjr算法 邻居表
下载PDF
基于ZigBee无线网络的Cluster-Tree路由算法研究 被引量:6
13
作者 赵博 吴静 《电子技术应用》 北大核心 2016年第4期116-119,123,共5页
针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度... 针对ZigBee无线网络中Cluster-Tree算法只依靠父子关系路由且ZigBee技术传输带宽的限制,致使网络中负载较重的链路不能及时传递信息,而造成网络拥塞、丢包和较低的吞吐量问题,提出了一种改进算法Z-DMHCTR。该算法针对负载超过一定限度的节点,除了按照原等级树算法路由之外,结合引入的邻居列表信息,寻找节点不与原路径相交的路径同时进行信息传输,从而提高网络带宽利用率,达到提升网络的吞吐量的目的。仿真实验主要从网络吞吐量、端到端数据传输延时等方面入手进行对比。结果表明,改进算法能够有效地提高网络吞吐量,并降低了传输数据的延时。 展开更多
关键词 ZIGBEE网络 cluster-Tree算法 Z-DMHCTR算法 邻居列表
下载PDF
ZigBee网络Cluster-Tree优化路由算法研究 被引量:5
14
作者 曹越 胡方明 党妮 《单片机与嵌入式系统应用》 2012年第10期4-7,共4页
通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优... 通过分析ZigBee协议中Cluster-Tree和AODVjr算法的优缺点,提出一种基于Cluster-Tree+AODVjr的优化路由算法。该算法利用ZigBee协议中的邻居表,通过定义分区来确定目的节点的范围,从而控制广播RREQ分组的跳数,防止无效的RREQ泛洪。此优化算法能够有效地减小路由跳数,缩短传输时延,减少网络中死亡节点的数量,提高数据传送的成功率。 展开更多
关键词 ZigBee 路由算法 cluster—Tree+AODVjr 邻居表 分组
下载PDF
Optimal midcourse trajectory cluster generation and trajectory modification for hypersonic interceptions 被引量:11
15
作者 Humin Lei Jin Zhou +2 位作者 Dailiang Zhai Lei Shao Dayuan Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第6期1162-1173,共12页
The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal traject... The hypersonic interception in near space is a great challenge because of the target’s unpredictable trajectory, which demands the interceptors of trajectory cluster coverage of the predicted area and optimal trajectory modification capability aiming at the consistently updating predicted impact point(PIP) in the midcourse phase. A novel midcourse optimal trajectory cluster generation and trajectory modification algorithm is proposed based on the neighboring optimal control theory. Firstly, the midcourse trajectory optimization problem is introduced; the necessary conditions for the optimal control and the transversality constraints are given.Secondly, with the description of the neighboring optimal trajectory existence theory(NOTET), the neighboring optimal control(NOC)algorithm is derived by taking the second order partial derivations with the necessary conditions and transversality conditions. The revised terminal constraints are reversely integrated to the initial time and the perturbations of the co-states are further expressed with the states deviations and terminal constraints modifications.Thirdly, the simulations of two different scenarios are carried out and the results prove the effectiveness and optimality of the proposed method. 展开更多
关键词 neighboring optimal control(NOC) midcourse guidance trajectory cluster generation optimal trajectory modification
下载PDF
基于ZigBee网络的Cluster-Tree能量优化算法
16
作者 李玉花 田志刚 《山西科技》 2014年第6期106-108,共3页
在ZigBee网络的Cluster-Tree算法中,簇首节点容易过早耗尽自身能量,减少网络的整体寿命。针对此问题,给出了更改簇首节点的方法,避免剩余能量低的簇首节点转发大数据,减少节点到协调器的跳数,提高网络的应用价值。
关键词 ZIGBEE网络 cluster-Tree算法 簇首节点 能量优化 剩余能量 邻居列表
下载PDF
基于网格近邻优化的密度峰值聚类算法 被引量:1
17
作者 刘继 杨金瑞 《计算机应用研究》 CSCD 北大核心 2024年第4期1058-1063,共6页
密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG... 密度峰值聚类(DPC)将数据样本点的局部密度和相对距离进行结合,能对任意形状数据集进行聚类处理,但密度峰值聚类算法存在主观选择截断距离、简单分配策略和较高时间复杂度等问题。为此,提出了一种基于网格近邻优化的密度峰值聚类算法(KG-DPC算法)。首先对数据空间进行网格化,减少了样本数据点之间距离的计算量;在计算局部密度时不仅考虑了网格自身的密度值,而且考虑了周围k个近邻的网格密度值,降低了主观选择截断距离对聚类结果的影响,提高了聚类准确率,设定网格密度阈值,保证了聚类结果的稳定性。通过实验结果表明,KG-DPC算法比DBSCAN、DPC和SDPC算法在聚类准确率上有很大提升,在聚类平均消耗时间上DPC、SNN-DPC和DPC-NN算法分别降低38%、44%和44%。在保证基本聚类准确率的基础上,KG-DPC算法在聚类效率上有特定优势。 展开更多
关键词 密度峰值聚类 密度阈值 网格 近邻优化
下载PDF
面向流形数据的加权自然近邻密度峰值聚类算法
18
作者 赵嘉 马清 +3 位作者 陈蔚昌 肖人彬 崔志华 潘正祥 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期652-660,669,共10页
流形数据由一些弧线形类簇组成,其特点是同一类簇的样本间距离较大.密度峰值聚类(DPC)算法具有简单高效的特点,但应对流形数据时表现不佳. DPC算法的两种密度度量标准可能造成不同程度的信息缺失,其分配策略仅参考距离和密度,致使聚类... 流形数据由一些弧线形类簇组成,其特点是同一类簇的样本间距离较大.密度峰值聚类(DPC)算法具有简单高效的特点,但应对流形数据时表现不佳. DPC算法的两种密度度量标准可能造成不同程度的信息缺失,其分配策略仅参考距离和密度,致使聚类精度不高.提出面向流形数据的加权自然近邻DPC(DPC-WNNN)算法,定义样本局部密度时,综合分析样本的局部和全局信息,引入加权的自然近邻以及逆近邻来应对高斯核或截断核的信息缺失问题.设计样本分配策略时通过引入共享近邻和共享逆近邻计算样本相似度,弥补DPC算法空间因素缺失的问题.将DPC-WNNN算法在流形数据集和真实数据集上与7种类似算法进行比较,结果表明该算法能更有效地找到类簇的中心点并准确分配样本,表现出良好的聚类性能. 展开更多
关键词 密度峰值 聚类 流形数据 自然近邻
下载PDF
面向密度分布不均数据的加权逆近邻密度峰值聚类算法
19
作者 吕莉 陈威 +2 位作者 肖人彬 韩龙哲 谭德坤 《智能系统学报》 CSCD 北大核心 2024年第1期165-175,共11页
针对密度分布不均数据,密度峰值聚类算法易忽略类簇间样本的疏密差异,导致误选类簇中心;分配策略易将稀疏区域的样本误分到密集区域,导致聚类效果不佳的问题,本文提出一种面向密度分布不均数据的加权逆近邻密度峰值聚类算法。该算法首... 针对密度分布不均数据,密度峰值聚类算法易忽略类簇间样本的疏密差异,导致误选类簇中心;分配策略易将稀疏区域的样本误分到密集区域,导致聚类效果不佳的问题,本文提出一种面向密度分布不均数据的加权逆近邻密度峰值聚类算法。该算法首先在局部密度公式中引入基于sigmoid函数的权重系数,增加稀疏区域样本的权重,结合逆近邻思想,重新定义了样本的局部密度,有效提升类簇中心的识别率;其次,引入改进的样本相似度策略,利用样本间的逆近邻及共享逆近邻信息,使得同一类簇样本间具有较高的相似度,可有效改善稀疏区域样本分配错误的问题。在密度分布不均、复杂形态和UCI数据集上的对比实验表明,本文算法的聚类效果优于IDPC-FA、FNDPC、FKNN-DPC、DPC和DPCSA算法。 展开更多
关键词 密度峰值聚类 密度分布不均 逆近邻 共享逆近邻 样本相似度 局部密度 分配策略 数据挖掘
下载PDF
基于改进LSTM的光伏发电功率预测方法研究
20
作者 彭曙蓉 陈慧霞 +2 位作者 孙万通 郭丽娟 李彬 《太阳能学报》 EI CAS CSCD 北大核心 2024年第11期296-302,共7页
针对光伏发电功率存在的较大随机性和不确定性问题,提出一种基于改进长短期记忆神经网络的光伏发电功率预测方法,以此提高光伏发电功率预测的准确性。首先,分析与光伏发电出力相关性较强的气象特征,并利用t分布近邻嵌入降维技术将被选... 针对光伏发电功率存在的较大随机性和不确定性问题,提出一种基于改进长短期记忆神经网络的光伏发电功率预测方法,以此提高光伏发电功率预测的准确性。首先,分析与光伏发电出力相关性较强的气象特征,并利用t分布近邻嵌入降维技术将被选取的特征数据降至二维,以减小数据复杂度。然后,通过密度峰值聚类将降维后的数据自动聚成3类,帮助训练长短期记忆神经网络预测模型。与传统循环神经网络和长短期记忆神经网络模型相比,所提模型在光伏发电功率预测方面表现出较高的预测精度,MSE减少49.00%和31.77%,RMSE减少28.59%和17.41%,MAE减少62.35%和53.52%。研究结果表明,该模型在光伏发电功率预测方面具有较好的适用性。 展开更多
关键词 光伏出力 预测 神经网络 聚类分析 t分布近邻嵌入
下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部