期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Long-term operation optimization of circulating cooling water systems under fouling conditions
1
作者 Jiarui Liang Yong Tian +3 位作者 Shutong Yang Yong Wang Ruiqi Yin Yufei Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期255-267,共13页
Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optim... Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization. 展开更多
关键词 Computer simulation Circulating water system FOULING Concentration cycle OPTIMIZATION variable frequency drive
下载PDF
SVM Algorithm for Vibration Fault Diagnosis in Centrifugal Pump
2
作者 Nabanita Dutta Palanisamy Kaliannan Paramasivam Shanmugam 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2997-3020,共24页
Vibration failure in the pumping system is a significant issue for indus-tries that rely on the pump as a critical device which requires regular maintenance.To save energy and money,a new automated system must be devel... Vibration failure in the pumping system is a significant issue for indus-tries that rely on the pump as a critical device which requires regular maintenance.To save energy and money,a new automated system must be developed that can detect anomalies at an early stage.This paper presents a case study of a machine learning(ML)-based computational technique for automatic fault detection in a cascade pumping system based on variable frequency drive(VFD).Since the intensity of the vibrational effect depends on which axis has the most significant effect,a three-axis accelerometer is used to measure it in the pumping system.The emphasis is on determining the vibration effect on different axes.For experiment,various ML algorithms are investigated on collected vibratory data through Matlab software in x,y,z axes and performances of the algorithms are compared based on accuracy rate,prediction speed and training time.Based on the proposed research results,the multiclass support vector machine(MSVM)is found to be the best suitable algorithm compared to other algorithms.It has been demonstrated that ML algorithms can detect faults automatically rather than conventional meth-ods.MSVM is used for the proposed work because it is less complex and pro-duces better results with a limited data set. 展开更多
关键词 Fault diagnosis machine learning PUMP vibration analysis variable frequency drive
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部