A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of...A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.展开更多
A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static met...A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.展开更多
The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the ...The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the classical dynamic analysis method for linear structures,such as the mode-superposition method,is not applicable to structures with AVS systems.In this paper,an approximate analysis method is proposed for displacement responses of structures with AVS systems.Firstly,an equivalent relationship between single-degree-of-freedom (SDOF) structures equipped with AVS systems and so-called fictitious linear structures is established.Then,an approximate mode-superposition (AMS) method is presented for multi-degree-of-freedom (MDOF) structures equipped with AVS systems.The accuracy of this method is investigated through extensive parametrical study using different types of earthquake excitations,and some modification is made to the method. Numerical calculation results indicate that the modified AMS method is effective for estimating the maximum displacements relative to the ground and the maximum interstorey drifts of MDOF structures equipped with AVS systems.展开更多
A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connec...A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connecting-rod low speed high torque (LSHT) hydraulic motor continuously. The new type of continuously variable displacement mechanism is simple and easy to be made. The structure and principle of a continuously variable displacement mechanism was introduced. The mathematic model of the continuously variable displacement mechanism was set up and its static and dynamic characteristics were analyzed with the help of computer simulation. It can be seen that the cam ring on camshaft of the traditional LSHT hydraulic motor can stop at any position between minimum and maximum eccentricity, according to an input fluid pressure signal. And it can also stay anywhere stably through self-adjusting. Besides, it can work stabilized when load impact or oil leakage exists.展开更多
A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem un...A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution.展开更多
Based on an exact CAD model of hydro-mechanical continuously variable transmission (HMCVT) gearbox which can transmit 180 horsepower, virtual prototype of the HMCVT was built. Revolution speed of shafts, gears and c...Based on an exact CAD model of hydro-mechanical continuously variable transmission (HMCVT) gearbox which can transmit 180 horsepower, virtual prototype of the HMCVT was built. Revolution speed of shafts, gears and clutches of the HMCVT were calibrated by using results obtained by theoretical calculation and test methods. The needed power and torques of both mechanical power input shaft and hydropower input shaft were calculated by simulation. Hydraulic power distributing ratio and power flow of the system was also studied. The analysis results showed that cycle power was produced inevitably when the output shaft speed of HMCVT change smoothly during mechanical and hydraulic working state HM1 to HM4, and the instantaneous maximum cycle power was 39.5%. Then the overall transmission efficiency of HMCVT was studied, and the maximum overall efficiency of the system was about 87%. The results of the studies gave references to select suited engine and variable displacement pump for the HMCVT, and to develop rational speed control strategies for the HMCVT by changing displacement ratio of variable displacement pump.展开更多
The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical...The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical simulations. Results show that two (normalized) model parameters, i.e., A (the normalized characteristic slip distance) and β-α (the difference in two normalized parameters of friction laws), control the solutions. From given values of △, β, and α, for the slowness laws, the solution exists and the unique non-zero fixed point is stable when △〉(β-α), yet not when △ 〈(β-α). For the slip law, the solution exists for large ranges of model parameters and the number and stability of the non-zero fixed points change from one case to another. Results suggest that the slip law is more appropriate for controlling earthquake dynamics than the slowness law.展开更多
Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a s...Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices.展开更多
文摘A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.
基金Project supported by the National Natural Science Foundation of China (Nos. 10002005 and 10421002)the Natural Science Foundation of Tianjin (No.02360081)the Education Committee Foundation of Tianjin (No.20022104)the Program for Changjiang Scholars and Innovative Research Team in University of China and the 211 Foundation of Dalian University of Technology
文摘A mathematical model was developed for layout optimization of truss structures with discrete variables subjected to dynamic stress, dynamic displacement and dynamic stability constraints. By using the quasi-static method, the mathematical model of structure optimization under dynamic stress, dynamic displacement and dynamic stability constraints were transformed into one subjected to static stress, displacement and stability constraints. The optimization procedures include two levels, i.e., the topology optimization and the shape optimization. In each level, the comprehensive algorithm was used and the relative difference quotients of two kinds of variables were used to search the optimum solution. A comparison between the optimum results of model with stability constraints and the optimum results of model without stability constraint was given. And that shows the stability constraints have a great effect on the optimum solutions.
基金National Natural Science foundation of China,Grant number 59895410
文摘The performance of structures with active variable stiffness (AVS) systems exhibits strong nonlinearity due to the variety with time of the stiffness of each storey unit,in which the AVS system is installed.Hence,the classical dynamic analysis method for linear structures,such as the mode-superposition method,is not applicable to structures with AVS systems.In this paper,an approximate analysis method is proposed for displacement responses of structures with AVS systems.Firstly,an equivalent relationship between single-degree-of-freedom (SDOF) structures equipped with AVS systems and so-called fictitious linear structures is established.Then,an approximate mode-superposition (AMS) method is presented for multi-degree-of-freedom (MDOF) structures equipped with AVS systems.The accuracy of this method is investigated through extensive parametrical study using different types of earthquake excitations,and some modification is made to the method. Numerical calculation results indicate that the modified AMS method is effective for estimating the maximum displacements relative to the ground and the maximum interstorey drifts of MDOF structures equipped with AVS systems.
文摘A continuously variable displacement mechanism, which is composed of a hydraulic control valve with mechanical-positional feedback to camshaft, was designed for changing the displacement of traditional camshaft connecting-rod low speed high torque (LSHT) hydraulic motor continuously. The new type of continuously variable displacement mechanism is simple and easy to be made. The structure and principle of a continuously variable displacement mechanism was introduced. The mathematic model of the continuously variable displacement mechanism was set up and its static and dynamic characteristics were analyzed with the help of computer simulation. It can be seen that the cam ring on camshaft of the traditional LSHT hydraulic motor can stop at any position between minimum and maximum eccentricity, according to an input fluid pressure signal. And it can also stay anywhere stably through self-adjusting. Besides, it can work stabilized when load impact or oil leakage exists.
文摘A method for topological optimization of structures with discrete variables subjected to dynamic stress and displacement constraints is presented. By using the quasistatic method, the structure optimization problem under dynamic stress and displacement constraints is converted into one subjected to static stress and displacement constraints. The comprehensive algorithm for topological optimization of structures with discrete variables is used to find the optimum solution.
基金The authors acknowledge the support of Project supported by recommend international advanced agricultural science and technology plan of Ministry of Agriculture of China (Grant No. 2010-Z18), and the National Natural Science Foundation of China (Grant No. 51275249).
文摘Based on an exact CAD model of hydro-mechanical continuously variable transmission (HMCVT) gearbox which can transmit 180 horsepower, virtual prototype of the HMCVT was built. Revolution speed of shafts, gears and clutches of the HMCVT were calibrated by using results obtained by theoretical calculation and test methods. The needed power and torques of both mechanical power input shaft and hydropower input shaft were calculated by simulation. Hydraulic power distributing ratio and power flow of the system was also studied. The analysis results showed that cycle power was produced inevitably when the output shaft speed of HMCVT change smoothly during mechanical and hydraulic working state HM1 to HM4, and the instantaneous maximum cycle power was 39.5%. Then the overall transmission efficiency of HMCVT was studied, and the maximum overall efficiency of the system was about 87%. The results of the studies gave references to select suited engine and variable displacement pump for the HMCVT, and to develop rational speed control strategies for the HMCVT by changing displacement ratio of variable displacement pump.
基金supported by Academia Sinica (Taipei) and Science Council (Grant NSC96-2116-M-001-012-MY3).
文摘The two one-state-variable, rate- and state-dependent friction laws, i.e., the slip and slowness laws, are com- pared on the basis of dynamical behavior of a one-degree-of-freedom spring-slider model through numerical simulations. Results show that two (normalized) model parameters, i.e., A (the normalized characteristic slip distance) and β-α (the difference in two normalized parameters of friction laws), control the solutions. From given values of △, β, and α, for the slowness laws, the solution exists and the unique non-zero fixed point is stable when △〉(β-α), yet not when △ 〈(β-α). For the slip law, the solution exists for large ranges of model parameters and the number and stability of the non-zero fixed points change from one case to another. Results suggest that the slip law is more appropriate for controlling earthquake dynamics than the slowness law.
基金We are grateful for financial supports from National Natural Science Foundation of China(62004166)Natural Science Foundation of Ningbo(202003N4062)+2 种基金National Postdoctoral Program for Innovative Talents(BX20200279)Natural Science Basic Research Program of Shaanxi Province(2020JQ-199)Fundamental Research Funds for the Central Universities(31020190QD027).
文摘Optical cavity has long been critical for a variety of applications ranging from precise measurement to spectral analysis.A number of theories and methods have been successful in describing the optical response of a stratified optical cavity,while the inverse problem,especially the inverse design of a displacement sensitive cavity,remains a significant challenge due to the cost of computation and comprehensive performance requirements.This paper reports a novel inverse design methodology combining the characteristic matrix method,mixed-discrete variables optimization algorithm,and Monte Carlo method-based tolerance analysis.The material characteristics are indexed to enable the mixed-discrete variables optimization,which yields considerable speed and efficiency improvements.This method allows arbitrary response adjustment with technical feasibility and gives a glimpse into the analytical characterization of the optical response.Two entirely different light-displacement responses,including an asymmetric sawtooth-like response and a highly symmetric response,are dug out and experimentally achieved,which fully confirms the validity of the method.The compact Fabry-Perot cavities have a good balance between performance and feasibility,making them promising candidates for displacement transducers.More importantly,the proposed inverse design paves the way for a universal design of optical cavities,or even nanophotonic devices.